
1

OPERATING SYSTEM – [OS] UNIT-I

Introduction:

Operating System is software that works as an interface between a user and the computer

hardware. The primary objective of an operating system is to make computer system convenient to use

and to utilize computer hardware in an efficient manner. The operating system performs the basic tasks

such as receiving input from the keyboard, processing instructions and sending output to the screen.

The Software is the Non-Touchable Parts of the Computer, and Software’s are those which are

used for Performing an Operation So that Software’s are just used for Making an Application but

hardware’s are those which are used for Performing an Operation. Operating system is software that is

required in order to run application programs and utilities. It works as a bridge to perform better

interaction between application programs and hardware of the computer. Various types of operating

systems' are UNIX, MS-DOS, MS-Windows - 98/XP/Vista, WindowsNT/2000, OS/2 and Mac OS.

Operating system manages overall activities of a computer and the input/output devices attached

to the computer. It is the first software you see when you turn on the computer, and the last software you

see when the computer is turned off. It is the software that enables all the programs you use. At the

simplest level, an operating system does two things:

The first, it manages the hardware and software resources of the computer system. These

resources include the processor, memory, disk space, etc. The second, it provides a stable, consistent way

for applications to deal with the hardware without having-to know all the details of the hardware.

The first task is very important i.e. managing the hardware and software resources, as various

processes compete to each other for getting the CPU time and memory space to complete the task. In this

regard; the operating system acts as a manager to allocate the available resources to 'satisfy the

requirements of each process.

The second task i.e. providing a consistent application interface is especially important. A

consistent application program interface (API) allows a user (or S/W developer) to write an application

program on any computer and to run this program on another computer, even if the hardware

configuration is different like as amount of memory, type of CPU or storage disk. It shields the user of

the machine from the low-level details of the machine's operation and provides frequently needed

facilities. When you turn on the computer, the operating system program is loaded into the main memory.

This program is called the kernel. Once initialized, the system program is prepared to run the user

programs and permits them to use the hardware efficiently. Windows 98/XP is an excellent example that

supports different types of hardware configurations from thousands of vendors and accommodates

thousands of different I/O devices like printers, disk drives, scanners and cameras.

2

Operating systems may be classified based on if multiple tasks can be performed simultaneously,

and if the system can be used by multiple users. It can be termed as single-user or multiuser OS, and

single-tasking or multi-tasking OS.A multi-user system must be multi-tasking. MS-DOS and Windows

3x are examples of single user operating system. Whereas UNIX is an example of multi-user and

multitasking operating system.

Classification of Operating systems:

 Multi-user : Allows two or more users to run programs at the same time. Some

 operating systems permit hundreds or even thousands of concurrent users.

 Multiprocessing : Supports running a program on more than one CPU.

 Multitasking : Allows more than one program to run concurrently.

 Multithreading : Allows different parts of a single program to run concurrently.

 Real time : Responds to input instantly. General-purpose operating systems, such

 as DOS and UNIX, are not real-time.

For Example if we want to Perform Some Paintings on the Screen, then we must use the

Application Software as Paint and Hardware as a Mouse for Drawing an Object. But how the System

knows what to do when Mouse Moves on the Screen and When the Mouse Draws a Line on the System

so that Operating System is Necessary which Interact between or which Communicates with the

Hardware and the Software.

Characteristics or Functions of OS:

For Better understanding you can see the Working of the Operating System. So we can say that the

Operating System has the Following Characteristics:

 It boots the computer.

 Operating System is a Collection of Programs those are Responsible for the Execution of other

Programs.

 Operating System is that which Responsible is for Controlling all the Input and Output Devices

those are connected to the System.

 Operating System is that which Responsible is for Running all the Application Software’s.

 Operating System is that which Provides Scheduling to the Various Processes Means Allocates

the Memory to various Process those Wants to Execute.

 Operating System is that which provides the Communication between the user and the System.

 Operating System is Stored into the BIOS Means in the Basic Input and Output System means

when a user Starts his System then this will Read all the instructions those are Necessary for

Executing the System Means for Running the Operating System, Operating System Must be

http://www.webopedia.com/TERM/M/multi_user.html
http://www.webopedia.com/TERM/M/multiprocessing.html
http://www.webopedia.com/TERM/C/CPU.html
http://www.webopedia.com/TERM/M/multitasking.html
http://www.webopedia.com/TERM/M/multithreading.html
https://www.webopedia.com/TERM/R/real_time.html
http://www.webopedia.com/TERM/D/DOS.html
https://www.webopedia.com/TERM/U/UNIX.html

3

Loaded into the Computer For this, this will use the Floppy or Hard Disks Which Stores the

Operating System.

 It provides file management which refers to the way that the operating system manipulates, stores,

retrieves and saves data.

 Error Handling is done by the operating system. It takes preventive measures whenever required

to avoid errors.

Most Popular Desktop Operating Systems:

The three most popular types of operating systems for personal and business computing include

Linux, Windows and Mac.

Windows - Microsoft Windows is a family of operating systems for personal and business

computers. Windows dominates the personal computer world, offering a graphical user interface (GUI),

virtual memory management, multitasking, and support for many peripheral devices.

Mac - Mac OS is the official name of the Apple Macintosh operating system. Mac OS features a

graphical user interface (GUI) that utilizes windows, icons, and all applications that run on a Macintosh

computer have a similar user interface.

Linux - Linux is a freely distributed open source operating system that runs on a number of

hardware platforms. The Linux kernel was developed mainly by Linus Torvalds and it is based on Unix.

In the same way that a desktop OS controls your desktop or laptop computer, a mobile operating

system is the software platform on top of which other programs can run on mobile devices, however,

these systems are designed specifically to run on mobile devices such as mobile phones, smartphones,

PDAs, tablet computers and other handhelds. The mobile OS is responsible for determining the functions

and features available on your device, such as thumb wheel, keyboards, WAP, synchronization with

applications, email, text messaging and more. The mobile OS will also determine which third-party

applications (mobile apps) can be used on your device.

What is an Operating System?

 A program that acts as an intermediary between a user of a computer and the computer hardware

Operating system goals:

 Execute user programs and make solving user problems easier

 Make the computer system convenient to use

 Use the computer hardware in an efficient manner

Operating System Definition

 OS is a resource allocator

 Manages all resources

 Decides between conflicting requests for efficient and fair resource use

http://www.webopedia.com/TERM/M/Microsoft_Windows.html
http://www.webopedia.com/TERM/M/Macintosh_computer.html
http://www.webopedia.com/TERM/L/Linux.html

4

 OS is a control program

 Controls execution of programs to prevent errors and improper use of the computer

 No universally accepted definition

 Everything a vendor ships when you order an operating system” is good approximation. But

varies wildly

===

Definition:

The operating system is the “one program running at all times on the computer”-

called the kernel. (Along with the kernel, there are two other types of programs:

 System programs- which are associated with the operating system but are not

necessarily part of the kernel, and

 Application programs- which include all programs not associated with the

operation of the system.)

==

Why should I study Operating Systems?

 Need to understand interaction between the hardware and software

 Need to understand basic principles in the design of computer systems

 Efficient resource management, security, flexibility

 Because it enables you to do things that are difficult/impossible otherwise.

OS challenges

•Reliability

-Does the system do what it was designed to do?

•Availability

-What portion of the time is the system working?

-Mean Time To Failure (MTTF), Mean Time to Repair

•Security

-Can the system be compromised by an attacker?

•Privacy

-Data is accessible only to authorized users

•Performance

•Latency/response time -How long does an operation take to complete?

•Throughput -How many operations can be done per unit of time?

•Overhead -How much extra work is done by the OS?

•Fairness -How equal is the performance received by different users?

•Predictability -How consistent is the performance over time?

5

WHAT OPERATING SYSTEMS DO

A computer system can be

divided roughly into four components:

the hardware, the operating system,

the application programs, and the

users.

The hardware—the central

processing unit (CPU), the memory,

and the input/output (I/O) devices—

provides the basic computing

resources for the system.

The application programs—

such as word processors, spreadsheets,

compilers, and Web browsers—define

the ways in which these resources are

used to solve users’ computing problems.

The operating system controls the hardware and coordinates its use among the various application

programs for the various users.

We can also view a computer system as consisting of hardware, software, and data.

Two Views of Operating System

1. User's View

2. System View

User View:

The user’s view of the computer varies according to the interface being used. Most computer

users sit in front of a PC, consisting of a monitor, keyboard, mouse, and system unit. Such a system is

designed for one user to monopolize its resources. The goal is to maximize the work (or play) that the

user is performing. In this case, the operating system is designed mostly for ease of use, with some

attention paid to performance and none paid to resource utilization—how various hardware and

software resources are shared. Performance is, of course, important to the user; but such systems are

optimized for the single-user experience rather than the requirements of multiple users.

In other cases, a user sits at a terminal connected to a mainframe or a minicomputer. Other users

are accessing the same computer through other terminals. These users share resources and may exchange

information. The operating system in such cases is designed to maximize resource utilization to assure

6

that all available CPU time, memory, and I/O are used efficiently and that no individual user takes more

than her fair share.

In other cases, users sit at workstations connected to networks of other workstations and servers.

Recently, many varieties of mobile computers, such as smart phones and tablets, have come into

fashion. The user interface for mobile computers generally features a touch screen, where the user

interacts with the system by pressing and swiping fingers across the screen rather than using a physical

keyboard and mouse.

System View:

From the computer’s point of view, the operating system is the program most intimately involved

with the hardware. In this context, we can view an operating system as a resource allocator.

 A computer system has many resources that may be required to solve a problem: CPU time,

memory space, file-storage space, I/O devices, and so on. The operating system acts as the manager of

these resources.

A slightly different view of an operating system emphasizes the need to control the various I/O

devices and user programs. An operating system is a control program. A control program manages the

execution of user programs to prevent errors and improper use of the computer. It is especially concerned

with the operation and control of I/O devices.

COMPUTER SYSTEM ORGANIZATION

Before we can explore the details of how computer systems operate, we need general knowledge

of the structure of a computer system. In this section, we look at several parts of this structure. The

section is mostly concerned with computer-system organization, so you can skim or skip it if you already

understand the concepts.

Computer-System Operation:

A modern general-

purpose computer system

consists of one or more CPUs

and a number of device

controllers connected through a

common bus that provides access

to shared memory (Figure). Each

device controller is in charge of a

specific type of device (for

7

example, disk drives, audio devices, or video displays). The CPU and the device controllers can execute

in parallel, competing for memory cycles. To ensure orderly access to the shared memory, a memory

controller synchronizes access to the memory.

For a computer to start running—for instance, when it is powered up or rebooted—it needs to

have an initial program to run.

This initial program, or bootstrap program, tends to be simple.

Typically, it is stored within the computer hardware in read-only memory (ROM) or electrically

erasable programmable read-only memory (EEPROM), known by the general term firmware.

It initializes all aspects of the system, from CPU registers to device controllers to memory

contents.

The bootstrap program must know how to load the operating system and how to start executing

that system.

To accomplish this goal, the bootstrap program must locate the operating-system kernel and load

it into memory.

Once the kernel is loaded and executing, it can start providing services to the system and its users.

Some services are provided outside of the kernel, by system programs that are loaded into memory at

boot time to become system processes, or system daemons that run the entire time the kernel is running.

On UNIX, the first system process is “init,” and it starts many other daemons. Once this phase is

complete, the system is fully booted, and the system waits for some event to occur.

The occurrence of an event is usually signaled by an interrupt from either the hardware or the

software. Hardware may trigger an interrupt at any time by sending a signal to the CPU, usually by way

of the system bus. Software may trigger an interrupt by executing a special operation called a system call

(also called a monitor call).

Storage Structure:

The CPU can load instructions only from memory, so any programs to run must be stored there.

General-purpose computers run most of their programs from rewritable memory, called main memory

(also called random-access memory, or RAM). Main memory commonly is implemented in a

semiconductor technology called dynamic random-access memory (DRAM). Ideally, we want the

programs and data to reside in main memory permanently.

This arrangement usually is not possible for the following two reasons:

1. Main memory is usually too small to store all needed programs and data permanently.

2. Main memory is a volatile storage device that loses its contents when power is turned off or

 otherwise lost.

8

 Thus, most computer systems provide

secondary storage as an extension of main

memory. The main requirement for secondary

storage is that it be able to hold large quantities

of data permanently. The most common

secondary-storage device is a magnetic disk,

which provides storage for both programs and

data.

The wide variety of storage systems can

be organized in a hierarchy (Figure) according

to speed and cost. The higher levels are

expensive, but they are fast. As we move down

the hierarchy, the cost per bit generally

decreases, whereas the access time generally

increases.

Storage Definition and notation

 The basic unit of computer storage is the bit. A bit can contain one of two values, 0 and 1.

 All other storage in a computer is based on collections of bits.

 Given enough bits, it is amazing how many things a computer can represent: numbers,

letters, images, movies, sounds, documents, and programs, to name a few.

 A byte is 8 bits, and on most computers it is the smallest convenient chunk of storage.

 For example, most computers don’t have an instruction to move a bit but do have one to

move a byte. A less common term is word, which is a given computer architecture’s

native unit of data. A word is made up of one or more bytes.

 For example, a computer that has 64-bit registers and 64-bit memory addressing typically

has 64-bit (8-byte) words.

 A computer executes many operations in its native word size rather than a byte at a time.

 Computer storage, along with most computer throughput, is generally measured and

manipulated in bytes and collections of bytes.

a kilobyte, or KB, is 1,024 bytes;

a megabyte, or MB, is 1,0242 bytes;

a gigabyte, or GB, is 1,0243 bytes;

a terabyte, or TB, is 1,0244 bytes; and

a petabyte, or PB, is 1,0245 bytes.

9

 Computer manufacturers often round off these numbers and say that a megabyte is 1

million bytes and a gigabyte is 1 billion bytes. Networking measurements are an exception

to this general rule; they are given in bits (because networks move data a bit at a time).

I/O Structure:

Storage is only one of many types of I/O devices within a computer. A large portion of operating

system code is dedicated to managing I/O, both because of its importance to the reliability and

performance of a system and because of the varying nature of the devices. Next, we provide an overview

of I/O.

A general-purpose computer system consists of CPUs and multiple device controllers that are

connected through a common bus. Each device controller is in charge of a specific type of device.

Depending on the controller, more than one device may be attached. For instance, seven or more devices

can be attached to the small computer-systems interface (SCSI) controller.

A device controller maintains some local buffer storage and a set of special-purpose registers. The

device controller is responsible for moving the data between the peripheral devices that it controls and its

local buffer storage. Typically, operating systems have a device driver for each device controller. This

device driver understands the device controller and provides the rest of the operating system with a

uniform interface to the device.

This form of interrupt-driven I/O is fine for moving small amounts of data but can produce high

overhead when used for bulk data movement such as disk I/O. To solve this problem, direct memory

access (DMA) is used.

COMPUTER-SYSTEM ARCHITECTURE

A computer system can be organized in a number of different ways, which we can categorize

roughly according to the number of general-purpose processors used.

Single-Processor Systems

Until recently, most computer systems used a single processor. On a single processor system,

there is one main CPU capable of executing a general-purpose instruction set, including instructions from

user processes.

Almost all single processor systems have other special-purpose processors as well. They may

come in the form of device-specific processors, such as disk, keyboard, and graphics controllers; or, on

mainframes, they may come in the form of more general-purpose processors, such as I/O processors that

move data rapidly among the components of the system.

10

All of these special-purpose processors run a limited instruction set and do not run user processes.

Sometimes, they are managed by the operating system, in that the operating system sends them

information about their next task and monitors their status.

For example, a disk-controller microprocessor receives a sequence of requests from the main

CPU and implements its own disk queue and scheduling algorithm. This arrangement relieves the main

CPU of the overhead of disk scheduling. PCs contain a microprocessor in the keyboard to convert the

keystrokes into codes to be sent to the CPU.

In other systems or circumstances, special-purpose processors are low-level components built into

the hardware. The operating system cannot communicate with these processors; they do their jobs

autonomously. The use of special-purpose microprocessors is common and does not turn a single-

processor system into a multiprocessor. If there is only one general-purpose CPU, then the system is a

single-processor system.

Multiprocessor Systems

Within the past several

years, multiprocessor systems

(also known as parallel systems or

multicore systems) have begun to

dominate the landscape of

computing. Such systems have two

or more processors in close

communication, sharing the

computer bus and sometimes the

clock, memory, and peripheral

devices. Multiprocessor systems

first appeared prominently appeared in servers and have since migrated to desktop and laptop systems.

Recently, multiple processors have appeared on mobile devices such as smartphones and tablet

computers.

Multiprocessor systems have three main advantages:

1. Increased throughput. By increasing the number of processors, we expect to get more work

done in less time. The speed-up ratio with N processors is not N, however; rather, it is less than N. When

multiple processors cooperate on a task, a certain amount of overhead is incurred in keeping all the parts

working correctly. This overhead, plus contention for shared resources, lowers the expected gain from

additional processors. Similarly, N programmers working closely together do not produce N times the

amount of work a single programmer would produce.

11

2. Economy of scale. Multiprocessor systems can cost less than equivalent multiple single-

processor systems, because they can share peripherals, mass storage, and power supplies. If several

programs operate on the same set of data, it is cheaper to store those data on one disk and to have all the

processors share them than to have many computers with local disks and many copies of the data.

3. Increased reliability. If functions can be distributed properly among several processors, then

the failure of one processor will not halt the system, only slow it down. If we have ten processors and one

fails, then each of the remaining nine processors can pick up a share of the work of the failed processor.

Thus, the entire system runs only 10 percent slower, rather than failing altogether.

The multiple-processor systems in use today are of two types.

Some systems use asymmetric

multiprocessing, in which each processor is

assigned a specific task.

A boss processor controls the system;

the other processors either look to the boss

for instruction or have predefined tasks. This

scheme defines a boss–worker relationship.

The boss processor schedules and allocates

work to the worker processors.

The most common systems use

symmetric multiprocessing (SMP), in

which each processor performs all tasks within the operating system. SMP means that all processors are

peers; no boss–worker relationship exists between processors.

Clustered Systems:

 Like parallel systems, clustered systems gather together multiple CPUs to accomplish computational

work.

 Clustered systems differ from parallel systems, however, in that they are composed of two or more

individual systems coupled together.

 The definition of the term clustered is not concrete; the general accepted definition is that clustered

computers share storage and is closely linked via LAN networking.

 Clustering is usually performed to provide high availability.

 A layer of cluster software runs on the cluster nodes. Each node can monitor one or more of the

others. If the monitored machine fails, the monitoring machine can take ownership of its storage, and

restart the application(s) that were running on the failed machine. The failed machine can remain

down, but the users and clients of the application would only see a brief interruption of service.

12

 Asymmetric Clustering - In this, one machine is in hot standby mode while the other is running the

applications. The hot standby host (machine) does nothing but monitor the active server. If that server

fails, the hot standby host becomes the active server.

 Symmetric Clustering - In this, two or more hosts are running applications, and they are monitoring

each other. This mode is obviously more efficient, as it uses all of the available hardware.

 Parallel Clustering - Parallel clusters allow multiple hosts to access the same data on the shared

storage. Because most operating systems lack support for this simultaneous data access by multiple

hosts, parallel clusters are usually accomplished by special versions of software and special releases

of applications.

Clustered technology is rapidly changing. Clustered system use and features should expand

greatly as Storage Area Networks (SANs). SANs allow easy attachment of multiple hosts to multiple

storage units. Current clusters are usually limited to two or four hosts due to the complexity of connecting

the hosts to shared storage.

OPERATING-SYSTEM STRUCTURE

Now that we have discussed basic computer-system organization and architecture, we are ready to

talk about operating systems.

An operating system provides the environment within which programs are executed. Internally,

operating systems vary greatly in their makeup, since they are organized along many different lines.

There are, however, many commonalities, which we consider in this section.

One of the most important aspects of operating systems is the ability to Multiprogram. A single

program cannot, in general, keep either the CPU or the I/O devices busy at all times. Single users

frequently have multiple programs running.

Multiprogramming increases CPU utilization by organizing jobs (code and data) so that the

CPU always has one to execute. The idea is as follows: The operating system keeps several jobs in

memory simultaneously.

 This idea is common in other life situations. A lawyer does not work for only one client at a time,

for example. While one case is waiting to go to trial or have papers typed, the lawyer can work on

another case. If he has enough clients, the lawyer will never be idle for lack of work. (Idle lawyers tend to

become politicians, so there is a certain social value in keeping lawyers busy.) Multiprogrammed systems

provide an environment in which the various system resources (for example, CPU, memory, and

peripheral devices) are utilized effectively, but they do not provide for user interaction with the computer

system.

13

Time sharing (or multitasking) is a logical extension of multiprogramming. In time-sharing

systems, the CPU executes multiple jobs by switching among them, but the switches occur so frequently

that the users can interact with each program while it is running.

Time sharing requires an interactive computer system, which provides direct communication

between the user and the system. The user gives instructions to the operating system or to a program

directly, using a input device such as a keyboard, mouse, touch pad, or touch screen, and waits for

immediate results on an output device. Accordingly, the response time should be short—typically less

than one second.

Each user has at least one separate program in memory. A program loaded into memory and

executing is called a process. When a process executes, it typically executes for only a short time before

it either finishes or needs to perform I/O. I/O may be interactive; that is, output goes to a display for the

user, and input comes from a user keyboard, mouse, or other device. Since interactive I/O typically runs

at “people speeds,” it may take a long time to complete. Input, for example, may be bounded by the

user’s typing speed; seven characters per second is fast for people but incredibly slow for computers.

Rather than let the CPU sit idle as this interactive input takes place, the operating system will rapidly

switch the CPU to the program of some other user.

Time sharing and multiprogramming require that several jobs be kept simultaneously in memory.

If several jobs are ready to be brought into memory, and if there is not enough room for all of them, then

the system must choose among them. Making this decision involves job scheduling.

 When the operating system selects a job from the job pool, it loads that job into memory for

execution. Having several programs in memory at the same time requires some form of memory

management. In addition, if several jobs are ready to run at the same time, the system must choose which

job will run first. Making this decision is CPU scheduling.

Finally, running multiple jobs concurrently requires that their ability to affect one another be

limited in all phases of the operating system; including process scheduling, disk storage and memory

management.

In a time-sharing system, the operating system must ensure reasonable response time. This goal is

sometimes accomplished through swapping, whereby processes are swapped in and out of main memory

to the disk.

A more common method for ensuring reasonable response time is virtual memory, a technique

that allows the execution of a process that is not completely in memory. The main advantage of the

virtual-memory scheme is that it enables users to run programs that are larger than actual physical

memory. Further, it abstracts main memory into a large, uniform array of storage, separating logical

memory as viewed by the user from physical memory. This arrangement frees programmers from

concern over memory-storage limitations.

14

OPERATING-SYSTEM OPERATIONS

In modern operating systems are interrupt driven. If there are no processes to execute, no I/O

devices to service, and no users to whom to respond, an operating system will sit quietly, waiting for

something to happen. Events are almost always signaled by the occurrence of an interrupt or a trap.

A trap (or an exception) is a software-generated interrupt caused either by an error (for example,

division by zero or invalid memory access) or by a specific request from a user program that an

operating-system service be performed. The interrupt-driven nature of an operating system defines that

system’s general structure.

For each type of interrupt, separate segments of code in the operating system determine what

action should be taken. An interrupt service routine is provided to deal with the interrupt. Since the

operating system and the users share the hardware and software resources of the computer system, we

need to make sure that an error in a user program could cause problems only for the one program

running. With sharing, many processes could be adversely affected by a bug in one program.

For example, if a process gets stuck in an infinite loop, this loop could prevent the correct

operation of many other processes. More subtle errors can occur in a multiprogramming system, where

one erroneous program might modify another program, the data of another program, or even the

operating system itself. Without protection against these sorts of errors, either the computer must execute

only one process at a time or all output must be suspect. A properly designed operating system must

ensure that an incorrect (or malicious) program cannot cause other programs to execute incorrectly.

Dual-Mode and Multimode Operation:

In order to ensure the proper execution of the operating system, we must be able to distinguish

between the execution of operating-system code and user defined code. The approach taken by most

computer systems is to provide hardware support that allows us to differentiate among various modes of

execution.

15

At the very least, we need two separate modes of operation:

1. User mode and

2. Kernel mode (also called supervisor mode, system mode, or privileged mode).

A bit, called the mode bit, is added to the hardware of the computer to indicate the current mode:

kernel (0) or user (1). With the mode bit, we can distinguish between a task that is executed on behalf of

the operating system and one that is executed on behalf of the user. When the computer system is

executing on behalf of a user application, the system is in user mode.

However, when a user application requests a service from the operating system (via a system

call), the system must transition from user to kernel mode to fulfill the request. This is shown in above

Figure. As we shall see, this architectural enhancement is useful for many other aspects of system

operation as well.

At system boot time, the hardware starts in kernel mode. The operating system is then loaded and

starts user applications in user mode. Whenever a trap or interrupt occurs, the hardware switches from

user mode to kernel mode (that is, changes the state of the mode bit to 0). Thus, whenever the operating

system gains control of the computer, it is in kernel mode. The system always switches to user mode (by

setting the mode bit to 1) before passing control to a user program.

Timer:

We must ensure that the operating system maintains control over the CPU. We cannot allow a

user program to get stuck in an infinite loop or to fail to call system services and never return control to

the operating system. To accomplish this goal, we can use a timer.

A timer can be set to interrupt the computer after a specified period. The period may be fixed (for

example, 1/60 second) or variable (for example, from 1 millisecond to 1 second). A variable timer is

generally implemented by a fixed-rate clock and a counter.

The operating system sets the counter. Every time the clock ticks, the counter is decremented.

When the counter reaches 0, an interrupt occurs. For instance, a 10-bit counter with a 1-millisecond clock

allows interrupts at intervals from 1 millisecond to 1,024 milliseconds, in steps of 1 millisecond. Before

turning over control to the user, the operating system ensures that the timer is set to interrupt. If the timer

interrupts, control transfers automatically to the operating system, which may treat the interrupt as a fatal

error or may give the program more time. Clearly, instructions that modify the content of the timer are

privileged.

16

OPERATING SYSTEM MANAGEMENT TASKS

1. Processor management which involves putting the tasks into order and pairing them into

manageable size before they go to the CPU.

2. Memory management which coordinates data to and from RAM (random-access memory) and

determines the necessity for virtual memory.

3. Device management which provides interface between connected devices.

4. Storage management which directs permanent data storage.

5. Production and Security.

6. Application which allows standard communication between software and your computer.

7. User interface which allows you to communicate with your computer.

Process Management:

A program does nothing unless its instructions are executed by a CPU.

A program in execution, as mentioned, is a process.

A time-shared user program such as a compiler is a process.

A word-processing program being run by an individual user on a PC is a process.

A system task, such as sending output to a printer, can also be a process .

A process needs certain resources-including CPU time, memory, files, and I/O devices-to

 accomplish its task

A process is the unit of work in a system. A system consists of a collection of processes, some of

which are operating-system processes (those that execute system code) and the rest of which are user

processes (those that execute user code). All these processes can potentially execute concurrently—by

multiplexing on a single CPU, for example.

The operating system is responsible for the following activities in connection with process

management:

• Scheduling processes and threads on the CPUs

• Creating and deleting both user and system processes

• Suspending and resuming processes

• Providing mechanisms for process synchronization

• Providing mechanisms for process communication

Memory Management:

The main memory is generally the only large storage device that the CPU is able to address and

access directly. For example, for the CPU to process data from disk, those data must first be transferred

to main memory by CPU-generated I/O calls. In the same way, instructions must be in memory for the

17

CPU to execute them. For a program to be executed, it must be mapped to absolute addresses and loaded

into memory. As the program executes, it accesses program instructions and data from memory by

generating these absolute addresses. Eventually, the program terminates, its memory space is declared

available, and the next program can be loaded and executed.

The operating system is responsible for the following activities in connection with memory

management:

• Keeping track of which parts of memory are currently being used and who is using them

• Deciding which processes (or parts of processes) and data to move into and out of memory

• Allocating and deallocating memory space as needed

Storage Management:

To make the computer system convenient for users, the operating system provides a uniform,

logical view of information storage. The operating system abstracts from the physical properties of its

storage devices to define a logical storage unit, the file. The operating system maps files onto physical

media and accesses these files via the storage devices.

File-System Management:

File management is one of the most visible components of an operating system.

Computers can store information on several different types of physical media. Magnetic disk,

optical disk, and magnetic tape are the most common. Each of these media has its own

characteristics and physical organization. Each medium is controlled by a device, such as a disk

drive or tape drive, that also has its own unique characteristics. These properties include access

speed, capacity, data-transfer rate, and access method (sequential or random).

A file is a collection of related information defined by its creator. Commonly, files

represent programs (both source and object forms) and data. Data files may be numeric,

alphabetic, alphanumeric, or binary. Files may be free-form (for example, text files), or they may

be formatted rigidly (for example, fixed fields).

Clearly, the concept of a file is an extremely general one. The operating system

implements the abstract concept of a file by managing mass-storage media, such as tapes and

disks, and the devices that control them. In addition, files are normally organized into directories

to make them easier to use. Finally, when multiple users have access to files, it may be desirable

to control which user may access a file and how that user may access it (for example, read, write,

append).

The operating system is responsible for the following activities in connection with file

management:

18

 Creating and deleting files

 Creating and deleting directories to organize files

 Supporting primitives for manipulating files and directories

 Mapping files onto secondary storage

 Backing up files on stable (nonvolatile) storage media

Mass-Storage Management:

The main memory is too small to accommodate all data and programs, and because the

data that it holds are lost when power is lost, the computer system must provide secondary storage

to back up main memory. Most modern computer systems use disks as the principal on-line

storage medium for both programs and data. Most programs—including compilers, assemblers,

word processors, editors, and formatters—are stored on a disk until loaded into memory. They

then use the disk as both the source and destination of their processing. Hence, the proper

management of disk storage is of central importance to a computer system.

The operating system is responsible for the following activities in connection with disk

management:

• Free-space management

• Storage allocation

• Disk scheduling

Because secondary storage is used frequently, it must be used efficiently. The entire speed

of operation of a computer may hinge on the speeds of the disk subsystem and the algorithms that

manipulate that subsystem.

Caching:

Caching is an important principle of computer systems. Here’s how it works. Information

is normally kept in some storage system (such as main memory). As it is used, it is copied into a

faster storage system—the cache—on a temporary basis. When we need a particular piece of

information, we first check whether it is in the cache. If it is, we use the information directly from

the cache. If it is not, we use the information from the source, putting a copy in the cache under

the assumption that we will need it again soon In a hierarchical storage structure, the same data

may appear in different levels of the storage system. For example, suppose that an integer A that

is to be incremented by 1 is located in file B, and file B resides on magnetic disk.

The increment operation proceeds by first issuing an I/O operation to copy the disk block

on which A resides to main memory. This operation is followed by copying A to the cache and to

an internal register. Thus, the copy of A appears in several places: on the magnetic disk, in main

memory, in the cache, and in an internal register. Once the increment takes place in the internal

19

register, the value of A differs in the various storage systems. The value of A becomes the same

only after the new value of A is written from the internal register back to the magnetic disk.

I/O Systems:

One of the purposes of an operating system is to hide the peculiarities of specific hardware

devices from the user. For example, in UNIX, the peculiarities of I/O devices are hidden from the

bulk of the operating system itself by the I/O subsystem.

The I/O subsystem consists of several components:

• A memory-management component that includes buffering, caching, and spooling

• A general device-driver interface

• Drivers for specific hardware devices

Only the device driver knows the peculiarities of the specific device to which it is assigned.

Protection and Security:

 Protection – any mechanism for controlling access of processes or users to resources defined by

the OS

Security – defense of the system against internal and external attacks

 Huge range, including denial-of-service, worms, viruses, identity theft, theft of service

 Systems generally first distinguish among users, to determine who can do what

 User identities (user IDs, security IDs) include name and associated number, one per user

 User ID then associated with all files, processes of that user to determine access control

 Group identifier (group ID) allows set of users to be defined and controls managed, then also

associated with each process, file

 Privilege escalation allows user to change to effective ID with more rights

COMPUTING ENVIRONMENTS

In computers, the term environment when unqualified usually refers to the combination of

hardware and software in a computer. In this usage, the term platform is a synonym.

Traditional Computing:

Consider the "typical office environment." Just a few years ago, this environment consisted of

PCs connected to a network, with servers providing file and print services. Remote access was awkward,

20

and portability was achieved by use of laptop computers. Terminals attached to mainframes were

prevalent at many companies as well, with even fewer remote access and portability options.

 The current trend is toward providing more ways to access these computing environments. Web

technologies are stretching the boundaries of traditional computing. Companies establish portals, which

provide web accessibility to their internal servers.

 Network computers are essentially terminals that understand web-based computing. Handheld

computers can synchronize with PCs to allow very portable use of company information. Handheld

PDAs can also connect to wireless networks to use the company's web portal (as well as the myriad

other web resources).

At home, most users had a single computer with a slow modem connection to the office, the

Internet, or both. Today, network-connection speeds once available only at great cost are relatively

inexpensive, giving home users more access to more data. These fast data connections are allowing

home computers to serve up web pages and to run networks that include printers, client PCs, and

servers. Some homes even have firewalls to protect their networks from security breaches. Those

firewalls cost thousands of rupees a few years ago and did not even exist a decade ago. In the latter half

of the previous century, computing resources were scarce.

Mobile Computing:

Mobile computing refers to computing on handheld smartphones and tablet computers. These

devices share the distinguishing physical features of being portable and lightweight.

Historically, compared with desktop and laptop computers, mobile systems gave up screen size,

memory capacity, and overall functionality in return for handheld mobile access to services such as e-

mail and web browsing.

Today, mobile systems are used not only for e-mail and web browsing but also for playing music

and video, reading digital books, taking photos, and recording high-definition video. Accordingly,

tremendous growth continues in the wide range of applications that run on such devices.

Many developers are now designing applications that take advantage of the unique features of

mobile devices, such as

global positioning system (GPS) chips,

accelerometers, and

gyroscopes.

The memory capacity and processing speed of mobile devices, however, are more limited than

those of PCs. Whereas a smartphone or tablet may have 64 GB in storage, it is not uncommon to find 1

21

TB in storage on a desktop computer. Similarly, becauseare smaller, are slower, and offer fewer

processing cores than processors found on traditional desktop and laptop computers.

 Two operating systems currently dominate mobile computing:

Apple iOS and Google Android. iOS was designed to run on Apple iPhone and

iPad mobile devices. Android powers smartphones and tablet computers available from

many manufacturers.

Distributed Systems:

A distributed system is a collection of physically separate, possibly heterogeneous, computer

systems that are networked to provide users with access to the various resources that the system

maintains. Access to a shared resource increases computation speed, functionality, data availability, and

reliability.

Generally, systems contain a mix of the two modes—

for example FTP and NFS. The protocols that create a distributed system can greatly

 affect that system’s utility and popularity.

A network, in the simplest terms, is a communication path between two or more systems.

Distributed systems depend on networking for their functionality.

Networks vary by the protocols used, the distances between nodes, and the transport media.

TCP/IP is the most common network protocol, and it provides the fundamental architecture of the

Internet.

Networks are characterized based on the distances between their nodes.

 A local-area network (LAN) connects computers within a room, a building, or a

campus.

 A wide-area network (WAN) usually links buildings, cities, or countries. A

global company may have a WAN to connect its offices worldwide, for example.

These networks may run one protocol or several protocols.

 The continuing advent of new technologies brings about new forms of networks.

For example, a metropolitan-area network (MAN) could link buildings within a

city.

 BlueTooth device use wireless technology to communicate over a distance of

several feet, in essence creating a personal-area network (PAN) between a phone

and a headset or a smartphone and a desktop computer.

22

Client-Server Computing:

As PCs have become faster, more powerful, and cheaper, designers have shifted away from

centralized system architecture. Terminals connected to centralized systems are now being supplanted by

PCs and mobile devices.

Correspondingly, user-interface

functionality once handled directly by

centralized systems is increasingly being handled

by PCs, quite often through a web interface. As a

result, many of today’s systems act as server

systems to satisfy requests generated by client

systems.

This form of specialized distributed

system, called a client–server system, has the

general structure depicted in Figure

Server systems can be broadly

categorized as compute servers and file servers:

• The compute-server system provides an interface to which a client can send a request to

perform an action (for example, read data). In response, the server executes the action

and sends the results to the client. A server running a database that responds to client

requests for data is an example of such a system.

• The file-server system provides a file-system interface where clients can create, update,

read, and delete files. An example of such a system is a web server that delivers files to

clients running web browsers.

Peer-to-Peer Computing:

Another structure for a distributed system is

the peer-to-peer (P2P) system model. In this model,

clients and servers are not distinguished from one

another; instead, all nodes within the system are

considered peers, and each may act as either a client

or a server, depending on whether it is requesting or

providing a service.

Peer-to-peer systems offer an advantage

over traditional client-server systems. In a client-

server system, the server is a bottleneck; but in a

23

peer-to-peer system, services can be provided by several nodes distributed throughout the network. To

participate in a peer-to-peer system, a node must first join the network of peers. Once a node has joined

the network, it can begin providing services to—and requesting services from—other nodes in the

network. Determining what services are available is accomplished in one of two general ways:

• When a node joins a network, it registers its service with a centralized lookup service on the

network. Any node desiring a specific service first contacts this centralized lookup service to determine

which node provides the service. The remainder of the communication takes place between the client

and the service provider.

• A peer acting as a client must first discover what node provides a desired service by

broadcasting a request for the service to all other nodes in the network. The node (or nodes) providing

that service responds to the peer making the request. To support this approach, a discovery protocol

must be provided that allows peers to discover services provided by other peers in the network.

Peer-to-peer networks gained widespread popularity in the late 1990s with several file-sharing

services, such as Napster and Gnutella that enable peers to exchange files with one another.

Web-Based Computing

The Web has become ubiquitous, leading to more access by a wider variety of devices than was

dreamt of a few years ago. PCs are still the most prevalent access devices, with workstations, handheld

PDAs, and even cell phones also providing access.

Web computing has increased the emphasis on networking. Devices that were not previously

networked now include wired or wireless access. Devices that were networked now have faster network

connectivity, provided by either improved networking technology, optimized network implementation

code, or both.

The implementation of web-based computing has given rise to new categories of devices, such as

load balancers, which distribute network connections among a pool of similar servers.

Operating systems like Windows 95, which acted as web clients, have evolved into Linux and

Windows XP, which can act as web servers as well as clients. Generally, the Web has increased the

complexity of devices, because their users require them to be web-enabled.

Virtualization:

Virtualization is a technology that allows operating systems to run as applications within other

operating systems. But the virtualization industry is vast and growing, which is a testament to its utility

and importance. Broadly speaking,

24

It is also called OS-level virtualization

is a type of virtualization technology which

work on OS layer. Here the kernel of an OS

allows more than one isolated user-space

instances to exist. Such instances are called

containers/software containers or virtualization

engines. In other words, OS kernel will run a

single operating system & provide that

operating system’s functionality to replicate on

each of the isolated partitions.

Virtualization is one member of a class of

software that also includes emulation.

Emulation is used when the source CPU type is different from the target CPU type.

For example, when Apple switched from the IBM Power CPU to the Intel x86

CPU for its desktop and laptop computers, it included an emulation facility called

“Rosetta,” which allowed applications compiled for the IBM CPU to run on the Intel

CPU. That same concept can be extended to allow an entire operating system written for

one platform to runon another. Emulation comes at a heavy price, however. Every

machine-level instruction that runs natively on the source system must be translated to the

equivalent function on the target system, frequently resulting in several target instructions.

If the source and target CPUs have similar performance levels, the emulated code can run

much slower than the native code.

Cloud Computing:

Cloud computing is a type of

computing that delivers computing,

storage, and even applications as a service

across a network. In some ways, it’s a

logical extension of virtualization,

because it uses virtualization as a base for

its functionality.

For example, the Amazon Elastic

Compute Cloud (EC2) facility has

thousands of servers, millions of virtual

25

machines, and peta bytes of storage available for use by anyone on the Internet. Users pay per month

based on how much of those resources they use.

There are actually many types of cloud computing, including the following:

 Public cloud—a cloud available via the Internet to anyone willing to pay for the services

 Private cloud—a cloud run by a company for that company’s own use

 Hybrid cloud—a cloud that includes both public and private cloud components

 Software as a service (SaaS)—one or more applications (such as word processors or

spreadsheets) available via the Internet

 Platform as a service (PaaS)—a software stack ready for application use via the Internet (for

example, a database server)

 Infrastructure as a service (IaaS)—servers or storage available over the Internet (for example,

storage available for making backup copies of production data)

These cloud-computing types are not discrete, as a cloud computing environment may provide a

combination of several types. For example, an organization may provide both SaaS and IaaS as a publicly

available service.

Real-Time Embedded Systems:

Embedded computers are the most prevalent form of computers in existence.

These devices are found everywhere, from car engines and manufacturing robots to DVDs and

microwave ovens. They tend to have very specific tasks.

The systems they run on are usually primitive, and so the operating systems provide limited

features. Usually, they have little or no user interface, preferring to spend their time monitoring and

managing hardware devices, such as automobile engines and robotic arms.

Embedded systems almost always run real-time operating systems. A real-time system is used

when rigid time requirements have been placed on the operation of a processor or the flow of data; thus,

it is often used as a control device in a dedicated application. Sensors bring data to the computer.

The computer must analyze the data and possibly adjust controls to modify the sensor inputs.

Systems that control scientific experiments, medical imaging systems, industrial control systems, and

certain display systems are real-time systems. Some automobile-engine fuel-injection systems, home-

appliance controllers, and weapon systems are also real-time systems.

26

HISTORY OF OPERATING SYSTEM

 Earliest computers had no Operating System

o Applications loaded manually

o Users were experts on the hardware

 First System Software was libraries of code to manage devices.

 This grew to batch processing systems, where some focused on application programming and

some on systems programming.

Batch Processing:

A typical computer in the 1960s and 70s was a

large machine. Its processing was managed by a

human operator. The operator would organize

various jobs from multiple users into batches.

Human operators would organize jobs into

batches

Time Sharing:

A timesharing system allows multiple users to interact with a computer at the same time.

Multiprogramming allowed multiple processes to be active at once, which gave rise to the ability for

programmers to interact with the computer system directly, while still sharing its resources. In a

timesharing system, each user has his or her own virtual machine, in which all system resources are (in

effect) available for use.

Fun Pictures

first computer bug, a moth The IBM 650 Magnetic Drum Data Processing System Machine

http://faculty.salina.k-state.edu/tim/ossg/glossary.html#term-multiprogramming

27

Cray I supercomputer, introduced in 1976

Current Operating System Research Topics

Symmetric multiprocessing

Allows for several CPUs to process multiple jobs at the same time. CPUs are independent

of one another, but each has access to the operating system.

Asymmetric multiprocessing

Some operating systems functions are assigned to subordinate processors, which take their

instructions from the main CPU.

Distributed processing

Processors are placed at remote locations and are connected to each other via telecom

devices. Different from symmetric multiprocessing systems as they do not share memory.

Computations can be dispersed among several processors.

EVOLUTION OF OPERATING SYSTEMS

The evolution of operating systems is directly dependent to the development of computer systems

and how users use them. Here is a quick tour of computing systems through the past fifty years in the

timeline.

Early Evolution

 1945: ENIAC, Moore School of Engineering, University of Pennsylvania.

 1949: EDSAC and EDVAC

 1949 BINAC - a successor to the ENIAC

 1951: UNIVAC by Remington

 1952: IBM 701

 1956: The interrupt

 1954-1957: FORTRAN was developed

28

Operating Systems by the late 1950s

By the late 1950s Operating systems were well improved and started supporting following usages :

 It was able to Single stream batch processing

 It could use Common, standardized, input/output routines for device access

 Program transition capabilities to reduce the overhead of starting a new job was added

 Error recovery to clean up after a job terminated abnormally was added.

 Job control languages that allowed users to specify the job definition and resource requirements were

made possible.

Operating Systems In 1960s

 1961: The dawn of minicomputers

 1962 Compatible Time-Sharing System (CTSS) from MIT

 1963 Burroughs Master Control Program (MCP) for the B5000 system

 1964: IBM System/360

 1960s: Disks become mainstream

 1966: Minicomputers get cheaper, more powerful, and really useful

 1967-1968: The mouse

 1964 and onward: Multics

 1969: The UNIX Time-Sharing System from Bell Telephone Laboratories

Supported OS Features by 1970s

 Multi User and Multi tasking was introduced.

 Dynamic address translation hardware and Virtual machines came into picture.

 Modular architectures came into existence.

 Personal, interactive systems came into existence.

Accomplishments after 1970

 1971: Intel announces the microprocessor

 1972: IBM comes out with VM: the Virtual Machine Operating System

 1973: UNIX 4th Edition is published

 1973: Ethernet

29

 1974 The Personal Computer Age begins

 1974: Gates and Allen wrote BASIC for the Altair

 1976: Apple II

 August 12, 1981: IBM introduces the IBM PC

 1983 Microsoft begins work on MS-Windows

 1984 Apple Macintosh comes out

 1990 Microsoft Windows 3.0 comes out

 1991 GNU/Linux

 1992 The first Windows virus comes out

 1993 Windows NT

 2007: iOS

 2008: Android OS

And as the research and development work still goes on, with new operating systems being

developed and existing ones getting improved and modified to enhance the overall user experience,

making operating systems fast and efficient like never before.

30

OPERATING SYSTEM SERVICES

An Operating System provides services to both the users and to the programs.

 It provides programs an environment to execute.

 It provides users the services to execute the programs in a convenient manner.

The specific services provided, of course, differ from one operating system to another, but we can

identify common classes. These operating system services are provided for the convenience of the

programmer, to make the programming task.

The above Figure shows one view of the various operating-system services and how they interrelate.

 User Interface

 Program Execution

 I/O operations

 File System manipulation

 Communication

 Error Detection

 Resource Allocation

 Accounting

 Protection and Security

One set of operating system services provides functions that are helpful to the user.

 User interface:

Almost all operating systems have a user interface (UI). This interface can take several forms.

 One is a command-line interface (CLI), which uses text commands and a method for

entering them (say, a keyboard for typing in commands in a specific format with specific

options).

31

 Another is a batch interface, in which commands and directives to control those

commands are entered into files, and those files are executed.

 Most commonly, a graphical user interface (GUI) is used. Here, the interface is a

window system with a pointing device to direct I/O, choose from menus, and make

selections and a keyboard to enter text.

Some systems provide two or all three of these variations.

Program execution:

The system must be able to load a program into memory and to run that program. The program

must be able to end its execution, either normally or abnormally (indicating error).

I/O Operation:

An I/O subsystem comprises of I/O devices and their corresponding driver software. Drivers hide the

peculiarities of specific hardware devices from the users.

 An Operating System manages the communication between user and device drivers.

 I/O operation means read or write operation with any file or any specific I/O device.

 Operating system provides the access to the required I/O device when required.

File system manipulation:

A file represents a collection of related information. Computers can store files on the disk

(secondary storage), for long-term storage purpose. Examples of storage media include magnetic tape,

magnetic disk and optical disk drives like CD, DVD. Each of these media has its own properties like

speed, capacity, data transfer rate and data access methods.

A file system is normally organized into directories for easy navigation and usage. These

directories may contain files and other directions.

Following are the major activities of an operating system with respect to file management −

 Program needs to read a file or write a file.

 The operating system gives the permission to the program for operation on file.

 Permission varies from read-only, read-write, denied and so on.

 Operating System provides an interface to the user to create/delete files.

 Operating System provides an interface to the user to create/delete directories.

 Operating System provides an interface to create the backup of file system.

Communication:

In case of distributed systems which are a collection of processors that do not share memory,

peripheral devices, or a clock, the operating system manages communications between all the processes.

Multiple processes communicate with one another through communication lines in the network.

The OS handles routing and connection strategies, and the problems of contention and security.

Following are the major activities of an operating system with respect to communication −

32

 Two processes often require data to be transferred between them

 Both the processes can be on one computer or on different computers, but are connected

through a computer network.

 Communication may be implemented by two methods, either by Shared Memory or by

Message Passing.

Error detection:

Errors can occur anytime and anywhere. An error may occur in CPU, in I/O devices or in the

memory hardware.

Following are the major activities of an operating system with respect to error handling −

 The OS constantly checks for possible errors.

 The OS takes an appropriate action to ensure correct and consistent computing.

Another set of operating system functions exists not for helping the user but rather for ensuring

the efficient operation of the system itself. Systems with multiple users can gain efficiency by sharing the

computer resources among the users.

Resource Allocation

In case of multi-user or multi-tasking environment, resources such as main memory, CPU cycles

and files storage are to be allocated to each user or job.

Following are the major activities of an operating system with respect to resource management −

 The OS manages all kinds of resources using schedulers.

 CPU scheduling algorithms are used for better utilization of CPU.

Accounting:

We want to keep track of which users use how much and what kinds of computer resources.

This record keeping may be used for accounting (so that users can be billed) or simply for

accumulating usage statistics.

Usage statistics may be a valuable tool for researchers who wish to reconfigure the system to

improve computing services.

Protection and Security:

Considering a computer system having multiple users and concurrent execution of multiple

processes, the various processes must be protected from each other's activities.

Protection refers to a mechanism or a way to control the access of programs, processes, or users to

the resources defined by a computer system.

Following are the major activities of an operating system with respect to protection −

 The OS ensures that all access to system resources is controlled.

 The OS ensures that external I/O devices are protected from invalid access attempts.

 The OS provides authentication features for each user by means of passwords.

33

USER AND OPERATING SYSTEM INTERFACE

We mentioned earlier that there are several ways for users to interface with the operating system.

Here, we discuss two fundamental approaches.

One provides a command-line interface, or command interpreter, that allows users to directly

enter commands to be performed by the operating system.

The other allows users to interface with the operating system- a GUI -Graphical User Interfaces.

Command Line Interpreter:

Some operating systems include the command interpreter in the kernel. Some, such as the popular

Windows and Linux operating systems, use the command interpreter as a special program that runs

when a user logs on or a job is initiated.

 In Windows, this is the MS-DOS prompt.

 Linux has more options. The command interpreter in Linux is known as a shell. The most commonly

used shell is the Bash shell, but others such as the Korn shell, C shell, and Bourne shell exist. Most

shells provide similar functionality, personal preference usually dictates which shell is best.

 The main function of the command utility is to receive and execute the next user generated

command.

 Many commands are intended to manipulate files.

 Operating systems such as UNIX implements commands through system programs. Often these

programs are stored as text files, which allow programmers to add additional functionality to the

utility.

Thus, the UNIX command to delete a file

Root rm file.txt

would search for a file called rm, load the file into memory, and execute it with the parameter file.txt.

Graphical User Interfaces – GUI:

Here, rather than entering commands directly via a command-line interface, users employ a

mouse-based window and- menu system characterized by a desktop metaphor.

The user moves the mouse to position its pointer on images, or icons, on the screen (the desktop)

that represent programs, files, directories, and system functions. Depending on the mouse pointer’s

location, clicking a button on the mouse can invoke a program, select a file or directory—known as a

folder—or pull down a menu that contains commands.

Because a mouse is impractical for most mobile systems, smartphones and handheld tablet

computers typically use a touchscreen interface. Here, users interact by making gestures on the

touchscreen—for example, pressing and swiping fingers across the screen

Choice of Interface:

The choice of whether to use a command-line or GUI interface is mostly one of personal

preference.

34

System administrators who manage computers and power users who have deep

knowledge of a system frequently use the command-line interface. For them, it is more efficient,

giving them faster access to the activities they need to perform.

Indeed, on some systems, only a subset of system functions is available via the GUI,

leaving the less common tasks to those who are command-line knowledgeable. Further, command

line interfaces usually make repetitive tasks easier, in part because they have their own

programmability.

For example, if a frequent task requires a set of command-line steps, those steps can be

recorded into a file, and that file can be run just like a program.

A GUI provides a mouse-based windows and menu system as an interface. Users of

Windows are more likely to use the GUI rather than the command line interface of MS-DOS,

while UNIX users generally prefer using the command line interface of the shell rather than the

GUI.

SYSTEM CALLS

System calls provide an interface to the services made available by an operating system.

Application developers often do not have direct access to the system calls, but can access them

through an application programming interface (API). The functions that are included in the API invoke

the actual system calls. By using the API, certain benefits can be gained:

 Portability: as long a system supports an API, any program using that API can compile and run.

 Ease of Use: using the API can be significantly easier than using the actual system call.

 These calls are generally available as routines written in C and C++, although certain low-level

tasks (for example, tasks where hardware must be accessed directly) may have to be written using

assembly-language instructions.

Before we discuss how an operating system makes system calls available, let’s first use an

example to illustrate how system calls are used: writing a simple program to read data from one file and

copy them to another file.

The first input that the program will need is the names of the two files: the input file and

the output file. These names can be specified in many ways, depending on the operating-system

design. One approach is for the program to ask the user for the names.

In an interactive system, this approach will require a sequence of system calls, first to

write a prompting message on the screen and then to read from the keyboard the characters that

define the two files.

35

On mouse-based and icon-based systems, a menu of file names is usually displayed in a

window. The user can then use the mouse to select the source name, and a window can be opened

for the destination name to be specified. This sequence requires many I/O system calls.

Once the two file names have been obtained, the program must open the input file and

create the output file. Each of these operations requires another system call. Possible error

conditions for each operation can require additional system calls. When the program tries to open

the input file, for example, it may find that there is no file of that name or that the file is protected

against access.

In these cases, the program

should print a message on the

console (another sequence of system

calls) and then terminate abnormally

(another system call). If the input file

exists, then we must create a new

output file. We may find that there is

already an output file with the same

name. This situation may cause the

program to abort (a system call), or

we may delete the existing file

(another system call) and create a

new one (yet another system call).

Another option, in an interactive

system, is to ask the user (via a sequence of system calls to output the prompting message and to

read the response from the terminal) whether to replace the existing file or to abort the program.

When both files are set up, we enter a loop that reads from the input file (a system call)

and writes to the output file (another system call). Each read and write must return status

information regarding various possible error conditions.

On input, the program may find that the end of the file has been reached or that there was

a hardware failure in the read (such as a parity error). The write operation may encounter various

errors, depending on the output device (for example, no more disk space).

Finally, after the entire file is copied, the program may close both files (another system

call), write a message to the console or window (more system calls), and finally terminate

normally (the final system call). This system-call sequence is shown in above Figure.

36

Frequently, systems execute thousands of system calls per second. Most programmers never see

this level of detail, however. Typically, application developers design programs according to an

application programming interface (API).

 Programming interface to the services provided by the OS

 Typically written in a high-level language (C or C++)

 Mostly accessed by programs via a high-level Application Program Interface (API)

 Three most common APIs are

1. Win32 API for Windows,

2. POSIX API (all versions of UNIX, Linux, and Mac OS X), and

3. Java API for the Java virtual machine (JVM)

Thus, most of the details of the

operating-system interface are hidden from

the programmer by the API and are managed

by the run-time support library. The

relationship between an API, the system-call

interface, and the operating system is shown

in Figure, which illustrates how the operating

system handles a user application invoking

the open() system call.

System calls Parameters:

Three general methods exist for passing parameters to the OS:

1. Parameters can be passed in

registers.

2. When there are more parameters

than registers, parameters can be stored in a

block and the block address can be passed

as a parameter to a register.

3. Parameters can also be pushed on or

popped off the stack by the operating

system.

37

TYPES OF SYSTEM CALLS

System calls can be grouped roughly into six major categories: process control, file manipulation,

device manipulation, information maintenance, communications, and protection.

Process Control

 end, abort

 load, execute

 create process, terminate process

 get process attributes,

 set process attributes

 wait for time

 wait event, signal event

 allocate and free memory

File Management

 create file, delete file

 open, close

 read, write, reposition

 get file attributes, set file attributes

Device Management

 request device, release device

 read, write, reposition

 get device attributes,

 set device attributes

 logically attach or detach devices

Information maintenance

 request device, release device

 read, write, reposition

 get device attributes,

 set device attributes

 logically attach or detach devices

Communication

 create, delete comm. connection

 send, receive messages

 transfer status information

 attach or detach remote devices

Process Control:

A running program needs to be able to stop execution either normally or abnormally. When

execution is stopped abnormally, often a dump of memory is taken and can be examined with a debugger.

38

File Management:

Some common system calls are create, delete, read, write, reposition, or close. Also, there is a

need to determine the file attributes – get and set file attribute. Many times the OS provides an API to

make these system calls.

Device Management:

Process usually requires several resources to execute, if these resources are available, they will be

granted and control returned to the user process. These resources are also thought of as devices. Some are

physical, such as a video card, and others are abstract, such as a file.

User programs request the device, and when finished they release the device. Similar to files, we

can read, write, and reposition the device.

Information Management:

Some system calls exist purely for transferring information between the user program and the

operating system. An example of this is time, or date.

The OS also keeps information about all its processes and provides system calls to report this

information.

Communication:

There are two models of interprocess communication, the message-passing model and the shared

memory model.

 Message-passing uses a common mailbox to pass messages between processes.

 Shared memory use certain system calls to create and gain access to create and gain access to

regions of memory owned by other processes. The two processes exchange information by

reading and writing in the shared data.

Protection

Protection provides a mechanism for controlling access to the resources provided by a computer

system. Historically, protection was a concern only on multiprogrammed computer systems with several

users. However, with the advent of networking and the Internet, all computer systems, from servers to

mobile handheld devices, must be concerned with protection.

39

Typically, system calls providing protection include set permission() and get permission(), which

manipulate the permission settings of resources such as files and disks. The allow user()and deny

user()system calls specify whether particular users can—or cannot—be allowed access to certain

resources.

Example of Standard C Library:

 The standard C library provides a portion of the

system call interface for many version of UNIX and Linux.

 As an example, let's assume a C program

invokes printf() statement.

 The C library intercepts this call and invokes the

necessary system call(s) in the OS.

 The C library takes the value returned by write() and

passes it back to the user program

OPERATING-SYSTEM DESIGN AND IMPLEMENTATION

In this section, we discuss problems we face in designing and implementing an operating system.

There are, of course, no complete solutions to such problems, but there are approaches that have proved

successful.

Design Goals

The first problem in designing a system is to define goals and specifications. At the highest level,

the design of the system will be affected by the choice of hardware and the type of system: batch, time

sharing, single user, multiuser, distributed, real time, or general purpose.

Beyond this highest design level, the requirements may be much harder to specify.

The requirements can, however, be divided into two basic groups:

User goals and

System goals.

Users want certain obvious properties in a system. The system should be convenient to use, easy

to learn and to use, reliable, safe, and fast. Of course, these specifications are not particularly useful in the

system design, since there is no general agreement on how to achieve them. A similar set of requirements

can be defined by those people who must design, create, maintain, and operate the system. The system

40

should be easy to design, implement, and maintain; and it should be flexible, reliable, error free, and

efficient. Again, these requirements are vague and may be interpreted in various ways.

Mechanisms and Policies

One important principle is the separation of policy from mechanism.

Mechanisms determine how to do something; policies determine what will be done.

 For example, the timer construct is a mechanism for ensuring CPU protection, but deciding how

long the timer is to be set for a particular user is a policy decision. The separation of policy and

mechanism is important for flexibility.

Policies are likely to change across places or over time. In the worst case, each change in policy

would require a change in the underlying mechanism. A general mechanism insensitive to changes in

policy would be more desirable. A change in policy would then require redefinition of only certain

parameters of the system. For instance, consider a mechanism for giving priority to certain types of

programs over others. If the mechanism is properly separated from policy, it can be used either to support

a policy decision that I/O-intensive programs should have priority over CPU-intensive ones or to support

the opposite policy.

 Policy decisions are important for all resource allocation. Whenever it is necessary to decide

whether or not to allocate a resource, a policy decision must be made. Whenever the question is how

rather than what, it is a mechanism that must be determined.

Implementation

Once an operating system is designed, it must be implemented. Because operating systems are

collections of many programs, written by many people over a long period of time, it is difficult to make

general statements about how they are implemented.

Early operating systems were written in assembly language. Now, although some operating

systems are still written in assembly language, most are written in a higher-level language such as C or an

even higher-level language such as C++. Actually, an operating system can be written in more than one

language.

The lowest levels of the kernel might be assembly language. Higher-level routines might be in C,

and system programs might be in C or C++, in interpreted scripting languages like PERL or Python, or in

shell scripts. In fact, a given Linux distribution probably includes programs written in all of those

languages.

41

OPERATING-SYSTEM STRUCTURE

A system as large and complex as a modern operating system must be engineered carefully if it is

to function properly and be modified easily. A common approach is to partition the task into small

components, or modules, rather than have one monolithic system. Each of these modules should be a

well-defined portion of the system, with carefully defined inputs, outputs, and functions.

Simple Structure

Many operating systems do not have well-defined

structures. Frequently, such systems started as small,

simple, and limited systems and then grew beyond their

original scope. MS-DOS is an example of such a system. It

was originally designed and implemented by a few people

who had no idea that it would

become so popular. It was written to provide the most

functionality in the least space, so it was not carefully

divided into modules. Figure shows its structure.

In MS-DOS, the interfaces and levels of

functionality are not well separated. For instance, application programs are able to access the basic I/O

routines to write directly to the display and disk drives. Such freedom leaves MS-DOS vulnerable to

errant (or malicious) programs, causing entire system crashes

when user programs fail. Of course, MS-DOS was also limited by the hardware of its era. Because the

Intel 8088 for which it was written provides no dual mode and no hardware protection, the designers of

MS-DOS had no choice but to leave the base hardware accessible.

Layered Approach

A system can be made modular in many ways. One

method is the layered approach, in which the operating

system is broken into a number of layers (levels). The

bottom layer (layer 0) is the hardware; the highest (layer

N) is the user interface. This layering structure is depicted

in Figure.

An operating-system layer is an implementation of

an abstract object made up of data and the operations that

can manipulate those data. A typical operating-system layer—say, layer M—consists of data structures

42

and a set of routines that can be invoked by higher-level layers. Layer M, in turn, can invoke operations

on lower-level layers.

The main advantage of the layered approach is simplicity of construction and debugging.

The major difficulty with the layered approach involves appropriately defining the various layers.

Microkernels

In a microkernel (also known as μ-kernel) is the near-minimum amount of software that can

provide the mechanisms needed to implement anoperating system (OS). These mechanisms include

low-level address space management, thread management, and inter-process communication (IPC).

We have already seen that as

UNIX expanded, the kernel became

large and difficult to manage. In the

mid-1980s, researchers at Carnegie

Mellon University developed an

operating system called Mach that

modularized the kernel using the

microkernel approach.

This method structures the

operating system by removing all

nonessential components from the kernel and implementing them as system and user-level programs. The

result is a smaller kernel. There is little consensus regarding which services should remain in the kernel

and which should be implemented in user space.

Typically, however, microkernels provide minimal process and memory management, in addition

to a communication facility. Figure illustrates the architecture of a typical microkernel.

The main function of the microkernel is to provide communication between the client program

and the various services that are also running in user space. Communication is provided through message

passing,

One benefit of the microkernel approach is that it makes extending the operating system easier.

Example: The Mac OS-X kernel (also known as Darwin) is also partly based on the Mach

microkernel. Another example is QNX, a real-time operating system for embedded systems.

43

Modules

Perhaps the best current

methodology for operating-system

design involves using loadable

kernel modules. Here, the kernel has

a set of core components and links in

additional services via modules, either

at boot time or during run time. This

type of design is common in modern

implementations of UNIX, suchas

Solaris, Linux, and Mac OS X, as

well as Windows.

The idea of the design is for

the kernel to provide core services while other services are implemented dynamically, as the kernel is

running. Linking services dynamically is preferable to adding new features directly to the kernel, which

would require recompiling the kernel every time a change was made.

Thus, for example, we might build CPU scheduling and memory management algorithms directly

into the kernel and then add support for different file systems by way of loadable modules.

The Solaris operating system structure, shown in above Figure, is organized around a core kernel

with seven types of loadable kernel modules:

1. Scheduling classes

2. File systems

3. Loadable system calls

4. Executable formats

5. STREAMS modules

6. Miscellaneous

7. Device and bus drivers

Hybrid Systems

A hybrid kernel is an operating system kernel architecture that attempts to combine aspects and

benefits of microkernel and monolithic kernel architectures used in computer operating systems.

In practice, very few operating systems adopt a single, strictly defined structure. Instead, they

combine different structures, resulting in hybrid systems that address performance, security, and usability

issues. For example, both Linux and Solaris are monolithic, because having the operating system in a

single address space provides very efficient performance.

44

However, they are also modular, so that new functionality can be dynamically added to the

kernel. Windows is largely monolithic as well (again primarily for performance reasons), but it retains

some behavior typical of microkernel systems, including providing support for separate subsystems

(known as operating-system personalities) that run as user-mode processes.

Mac OS X

The Apple Mac OS X

operating system uses a hybrid

structure. As shown in Figure , it

is a layered system. The top

layers include the Aqua user

interface and a set of application

environments and services.

Notably, the Cocoa

environment specifies an API for the Objective-C programming language, which is used for

writing Mac OS X applications. Below these layers is the kernel environment, which consists

primarily of the Mach microkernel and the BSD UNIX kernel. Mach provides memory

management; support for remote procedure calls (RPCs) and interprocess communication (IPC)

facilities, including message passing; and thread scheduling.

iOS

iOS is a mobile operating system

designed by Apple to run its smartphone, the

iPhone, as well as its tablet computer, the iPad.

iOS is structured on the Mac OS X operating

system, with added functionality pertinent to

mobile devices, but does not directly run Mac

OS X applications. The structure of iOS appears

in Figure.

Cocoa Touch is an API for Objective-C

that provides several frameworks for developing applications that run on iOS devices. The

fundamental difference between Cocoa, mentioned earlier, and Cocoa Touch is that the latter

provides support for hardware features unique to mobile devices, such as touch screens.

The media services layer provides services for graphics, audio, and video.

45

Android

The Android operating

system was designed by the Open

Handset Alliance (led primarily by

Google) and was developed for

Android smartphones and tablet

computers. Whereas iOS is

designed to run on Apple mobile

devices and is close-sourced,

Android runs on a variety of

mobile platforms and is open-

sourced, partly explaining its rapid

rise in popularity. The structure of

Android appears in Figure 2.18.

Android is similar to iOS in that it is a layered stack of software that provides a rich set of

frameworks for developing mobile applications. At the bottom of this software stack is the Linux

kernel, although it has been modified by Google and is currently outside the normal distribution

of Linux releases.

Software designers for Android devices develop applications in the Java language.

However, rather than using the standard Java API, Google has designed a separate Android API

for Java development. The Java class files are first compiled to Java bytecode and then translated

into an executable file that runs on the Dalvik virtual machine. The Dalvik virtual machine was

designed for Android and is optimized for mobile devices with limited memory and CPU

processing capabilities.

SYSTEM PROGRAMS

Another aspect of a modern system is its collection of system programs. In computer hierarchy, at

the lowest level is hardware. Next is the operating system, then the system programs, and finally the

application programs.

System programs, also known as system utilities, provide a convenient environment for

program development and execution.

Some of them are simply user interfaces to system calls. Others are considerably more complex.

They can be divided into these categories:

46

• File management. These programs create, delete, copy, rename, print, dump, list, and generally

manipulate files and directories.

• Status information. Some programs simply ask the system for the date, time, amount of available

memory or disk space, number of users, or similar status information. Others are more complex,

providing detailed performance, logging, and debugging information.

File modification. Several text editors may be available to create and modify the content of files stored

on disk or other storage devices. There may also be special commands to search contents of files or

perform transformations of the text.

• Programming-language support. Compilers, assemblers, debuggers, and interpreters for common

programming languages (such as C, C++, Java, and PERL) are often provided with the operating system

or available as a separate download.

• Program loading and execution. Once a program is assembled or compiled, it must be loaded into

memory to be executed. The system may provide absolute loaders, relocatable loaders, linkage editors,

and overlay loaders. Debugging systems for either higher-level languages or machine language are

needed as well.

• Communications. These programs provide the mechanism for creating virtual connections among

processes, users, and computer systems. They allow users to send messages to one another’s screens, to

browse Web pages, to send e-mail messages, to log in remotely, or to transfer files from one machine to

another.

• Background services. All general-purpose systems have methods for launching certain system-

program processes at boot time. Some of these processes terminate after completing their tasks, while

others continue to run until the system is halted. Constantly running system-program processes are

known as services, subsystems, or daemons.

One example is process schedulers that start processes according to a specified schedule, system

error monitoring services, and print servers. Typical systems have dozens of daemons.

In addition, operating systems that run important activities in user context rather than in kernel

context may use daemons to run these activities.

47

Along with system programs, most operating systems are supplied with programs that are useful

in solving common problems or performing common operations. Such application programs include

Web browsers, word processors and text formatters, spreadsheets, database systems, compilers, plotting

and statistical-analysis packages, and games.

OPEN-SOURCE OPERATING SYSTEMS

Operating systems has been made easier by the availability of a vast number of open-source

format rather than as compiled binary code.

Linux is the most famous open-source operating system, while Microsoft Windows is a well-

known example of the opposite closed-source approach.

Apple’s Mac OS X and iOS operating systems comprise a hybrid approach. They contain an

open-source kernel named Darwin yet include proprietary, closed-source components as well.

Starting with the source code allows the programmer to produce binary code that can be executed

on a system. Doing the opposite—reverse engineering the source code from the binaries—is quite a lot

of work, and useful items such as comments are never recovered. Learning operating systems by

examining the source code has other benefits as well. With the source code in hand, a student can modify

the operating system and then compile and run the code to try out those changes, which is an excellent

learning tool.

There are many benefits to open-source operating systems, including a community of interested

(and usually unpaid) programmers who contribute to the code by helping to debug it, analyze it, provide

support, and suggest changes.

Arguably, open-source code is more secure than closed-source code because many more eyes are

viewing the code.

VIRTUAL MACHINE

A virtual machine is a program that acts as a virtual computer. It runs on your current operating

system – the “host” operating system – and provides virtual hardware to “guest” operating systems.

The guest operating systems run in windows on your host operating system, just like any other

program on your computer.

The guest operating system runs normally, as if it were running on a physical computer – from the

guest operating system’s perspective, the virtual machine appears to be a real, physical computer.

Virtual machines provide their own virtual hardware, including a virtual CPU, memory, hard

drive, network interface, and other devices. The virtual hardware devices provided by the virtual machine

48

are mapped to real hardware on your physical machine. For example, a virtual machine’s virtual hard

disk is stored in a file located on your hard drive.

You can have several virtual machines installed on your system; you’re only limited by the

amount of storage you have available for them. Once you’ve installed several operating systems, you can

open your virtual machine program and choose which virtual machine you want to boot – the guest

operating system starts up and runs in a window on your host operating system, although you can also

run it in full-screen mode.

Uses for Virtual Machines:

Virtual machines have a number of popular uses:

 Test new versions of operating systems: You can run the development version of Windows 8 in

a virtual machine on your Windows 7 computer. This allows you to experiment with Windows 8

without installing an unstable version of Windows on your computer.

 Experiment with other operating systems: You can install various distributions of Linux and

other more obscure operating systems in a virtual machine to experiment with them and learn

how they work. If you’re interested in Ubuntu, you can install it in a virtual machine and play with

it at your own pace — in a window on your normal desktop.

 Use software requiring an outdated operating system: If you’ve got an important application that

only runs on Windows XP, you can install XP in a virtual machine and run the application in the

virtual machine. The virtual machine is actually running Windows XP, so compatibility shouldn’t

be a problem. This allows you to use an application that only works with Windows XP without

actually installing Windows XP on your computer – especially important considering many new

laptops and other hardware may not fully support Windows XP.

https://www.makeuseof.com/tag/windows-8-virtualbox-free/
https://www.makeuseof.com/tag/windows-8-virtualbox-free/
https://www.makeuseof.com/tag/installing-windows-8-consumer-preview/
https://www.makeuseof.com/tag/virtualboxes-free-images-test-run-open-source-operating-systems-linux/
https://www.makeuseof.com/tag/virtualboxes-free-images-test-run-open-source-operating-systems-linux/
https://www.makeuseof.com/tag/4-love-ubuntu-1204/
https://www.makeuseof.com/tag/run-windows-7-xp-mode/

49

 Run software designed for another operating systems: Mac and Linux users can run Windows in

a virtual machine to run Windows software on their computers without the compatibility headaches

of Wine and Crossover. Unfortunately, games can be a problem – virtual machine programs

introduce overhead and no virtual machine application will allow you to run the latest 3D games in

a virtual machine. Some 3D effects are supported, but 3D graphics are the least well supported

thing you can do in a virtual machine.

 Test software on multiple platforms: If you need to test whether an application works on multiple

operating systems – or just different versions of Windows – you can install each in a virtual

machine instead of keeping separate computers around for each.

 Consolidate servers: For businesses running multiple servers, existing servers can be placed into

virtual machines and run on a single computer. Each virtual machine is an isolated container, so this

doesn’t introduce the security headaches involved with running different servers on the same

operating system. The virtual machines can also be moved between physical servers.

Recommended Virtual Machine Software

VirtualBox is a great, open-source application that runs on Windows, Mac OS X, and Linux. One of the

best things about VirtualBox is that there’s no commercial version – you get all the features for free,

including advanced features like “snapshots,” which allow you to take a snapshot of a virtual machine’s

state and revert to that state in the future – a great feature for testing.

VMware Player is another high-quality virtual machine program for Windows and Linux. VMware

Player is the free counterpart to VMware Workstation, a commercial application, so you don’t get all the

advanced features you would with VirtualBox. However, both VirtualBox and VMware Player are solid

programs that offer the basic features – creating and running virtual machines – for free. If one of them

doesn’t work quite right, try the other.

https://www.makeuseof.com/tag/sleeping-with-the-enemy-running-windows-programs-on-your-mac-using-winebottler/
https://www.makeuseof.com/tag/enable-windows-7-aero-effects-virtualbox/
https://www.makeuseof.com/tag/website-hosting-technology-explained/
https://www.virtualbox.org/
http://www.vmware.com/products/player/

50

OPERATING-SYSTEM GENERATION

It is possible to design, code, and implement an operating system specifically for one machine at

one site. More commonly, however, operating systems are designed to run on any of a class of machines

at a variety of sites with a variety of peripheral configurations.

The system must then be configured or generated for each specific computer site, a process

sometimes known as system generation SYSGEN.

The operating system is normally distributed on disk, on CD-ROM or DVD-ROM, or as an “ISO”

image, which is a file in the format of a CD-ROM or DVD-ROM. To generate a system, we use a special

program. This SYSGEN program reads from a given file, or asks the operator of the system for

information concerning the specific configuration of the hardware system, or probes the hardware

directly to determine what components are there. The following kinds of information must be

determined.

• What CPU is to be used?

What options (extended instruction sets, floating point arithmetic, and so on) are installed? For

multiple CPU systems, each CPU may be described.

• How will the boot disk be formatted?

How many sections, or “partitions,” will it be separated into, and what will go into each partition?

How much memory is available? Some systems will determine this value

themselves by referencing memory location after memory location until an “illegal address” fault is

generated. This procedure defines the final legal address and hence the amount of available memory.

• What devices are available?

The system will need to know how to address each device (the device number), the device

interrupt number, the device’s type and model, and any special device characteristics.

• What operating-system options are desired, or what parameter values are to be used?

These options or values might include how many buffers of which sizes should be used, what type

of CPU-scheduling algorithm is desired, what the maximum number of processes to be supported is, and

so on.

Once this information is determined, it can be used in several ways. At one extreme, a system

administrator can use it to modify a copy of the source code of the operating system. The operating

51

system then is completely compiled. Data declarations, initializations, and constants, along with

conditional compilation, produce an output-object version of the operating system that is tailored to the

system described.

At a slightly less tailored level, the system description can lead to the creation of tables and the

selection of modules from a precompiled library. These modules are linked together to form the

generated operating system. Selection allows the library to contain the device drivers for all supported

I/O devices, but only those needed are linked into the operating system. Because the system is not

recompiled, system generation is faster, but the resulting system may be overly general. At the other

extreme, it is possible to construct a system that is completely table driven. All the code is always part of

the system, and selection occurs at execution time, rather than at compile or link time. System generation

involves simply creating the appropriate tables to describe the system.

The major differences among these approaches are the size and generality of the generated system

and the ease of modifying it as the hardware configuration changes. Consider the cost of modifying the

system to support a newly acquired graphics terminal or another disk drive. Balanced against that cost, of

course, is the frequency (or infrequency) of such changes.

SYSTEM BOOT

[

 Booting the system is done by loading the kernel into main memory, and starting its
execution.

 The CPU is given a reset event, and the instruction register is loaded with a predefined

memory location, where execution starts.

o The initial bootstrap program is found in the BIOS read-only memory.

o This program can run diagnostics, initialize all components of the system,

loads and starts the Operating System loader. (Called boot strapping)

o The loader program loads and starts the operating system.
o When the Operating system starts, it sets up needed data structures in

memory, sets several registers in the CPU, and then creates and starts the
first user level program. From this point, the operating system only runs in
response to interrupts.

]

After an operating system is generated, it must be made available for use by the hardware. But

how does the hardware know where the kernel is or how to load that kernel?

52

The procedure of starting a computer by loading the kernel is known as booting the system. On

most computer systems, a small piece of code known as the bootstrap program or bootstrap loader

locates the kernel, loads it into main memory, and starts its execution.

 Some computer systems, such as PCs, use a two-step process in which a simple bootstrap loader

fetches a more complex boot program from disk, which in turn loads the kernel. When a CPU receives a

reset event—for instance, when it is powered up or rebooted—the instruction register is loaded with a

predefined memory location, and execution starts there. At that location is the initial bootstrap program.

This program is in the form of read-only memory (ROM), because the RAM is in an unknown state at

system startup. ROM is convenient because it needs no initialization and cannot easily be infected by a

computer virus.

The bootstrap program can perform a variety of tasks.

Usually, one task is to run diagnostics to determine the state of the machine. If the

diagnostics pass, the program can continue with the booting steps. It can also initialize all

aspects of the system, from CPU registers to device controllers and the contents of main

memory. Sooner or later, it starts the operating system.

Some systems—such as cellular phones, tablets, and game consoles—store the entire operating

system in ROM. Storing the operating system in ROM is suitable for small operating systems, simple

supporting hardware, and rugged operation. A problem with this approach is that changing the bootstrap

code requires changing the ROM hardware chips. Some systems resolve this problem by using erasable

programmable read-only memory (EPROM), which is read only except when explicitly given a

command to become writable. All forms of ROM are also known as firmware, since their characteristics

fall somewhere between those of hardware and those of software. A problem with firmware in general is

that executing code there is slower than executing code in RAM.

Some systems store the operating system in firmware and copy it to RAM for fast execution. A

final issue with firmware is that it is relatively expensive, so usually only small amounts are available.

For large operating systems (including most general-purpose operating systems like Windows,

Mac OS X, and UNIX) or for systems that change frequently, the bootstrap loader is stored in firmware,

and the operating system is on disk. In this case, the bootstrap runs diagnostics and has a bit of code that

can read a single block at a fixed location (say block zero) from disk into memory and execute the code

from that boot block.

53

UNIT – II PROCESS MANAGEMENT

 A process can be thought of as a program in execution. A process will need certain resources - such as

CPU time, memory, files, and I/O devices - to accomplish its task. These resources are allocated to the

process either when it is created or while it is executing.

 A process is the unit of work in most systems. Systems consist of a collection of processes: operating-

system processes execute system code, and user processes execute user code. All these processes may

execute concurrently.

 Although traditionally a process contained only a single thread of control as it ran, most modern operating

systems now support processes that have multiple threads.

 The operating system is responsible for several important aspects of process and thread management: the

creation and deletion of both user and system processes; the scheduling of processes; and the provision of

mechanisms for synchronization, communication, and deadlock handling for processes.

Process Concept:

A question that arises in discussing operating systems involves what to call all the CPU activities. A batch

system executes jobs, whereas a time-shared system has user programs, or tasks.

Even on a single-user system, a user may be able to run several programs at one time: a word processor, a

Web browser, and an e-mail package.

And even if a user can execute only one program at a time, such as on an embedded device that does not

support multitasking, the operating system may need to support its own internal programmed activities, such as

memory management.

In many respects, all these activities are similar, so we call all of them processes.

The terms job and process are used almost interchangeably in this text.

The Process:

 A process is more than the program code, which is sometimes known as the

text section.

 It also includes the current activity, as represented by the value of the

program counter and the contents of the processor’s registers.

 A process generally also includes the process stack, which contains

temporary data (such as function parameters, return addresses, and local variables),

and

 A data section, which contains global variables.

 A process may also include a heap, which is memory that is dynamically

allocated during process run time. The structure of a process in memory is shown in

Figure. We emphasize that a program by itself is not a process.

54

o A program is a passive entity, such as a file containing a list of instructions stored on disk (often called an

executable file).

o In contrast, a process is an active entity, with a program counter specifying the next instruction to execute

and a set of associated resources. A program becomes a process when an executable file is loaded into

memory.

Two common techniques for loading executable files are

 Double-clicking an icon representing the executable file and

 Entering the name of the executable file on the command line (as in prog.exe or a.out).

Process State

As a process executes, it changes state. The state of a process is defined in part by the current activity of

that process. A process may be in one of the following states: The state diagram corresponding to these states is

presented in above Figure.

New- The process is being created.

Running- Instructions are being

executed.

Waiting.-The process is waiting for

some event to occur (such as an I/O

completion)

Ready.-The process is waiting to be

assigned to a processor.

Terminated- The process has finished execution.

It is important to realize that only one process can be running on any processor at any instant. Many

processes may be ready and waiting.

Process Control Block-[PCB]:

Each process is represented in the operating system by a process control

block (PCB)—also called a task control block.

A PCB is shown in Figure.

It contains many pieces of information associated with a specific process,

including these:

 Process state. The state may be new, ready, running, waiting, halted, and

so on.

55

 Program counter. The counter indicates the address of the next instruction to be executed for this process.

 CPU registers. The registers vary in number

and type, depending on the computer architecture.

They include accumulators, index registers, stack

pointers, and general-purpose registers, plus any

condition-code information.

 CPU-scheduling information. This

information includes a process priority, pointers to

scheduling queues, and any other scheduling

parameters.

 Memory-management information. This

information may include such items as the value of

the base and limit registers and the page tables, or the

segment tables, depending on the memory system

used by the operating system.

 Accounting information. This information

includes the amount of CPU and real time used, time

limits, account numbers, job or process numbers, and

so on.

 I/O status information. This information

includes the list of I/O devices allocated to the

process, a list of open files, and so on.

In brief, the PCB simply serves as the repository for any information that may vary from process to process.

PROCESS SCHEDULING

The objective of multiprogramming is to have some process running at all times, to maximize CPU

utilization.

The objective of time sharing is to switch the CPU among processes so frequently that users can interact

with each program while it is running.

To meet these objectives, the process scheduler selects an available process (possibly from a set of

several available processes) for program execution on the CPU.

 For a single-processor system, there will never be more than one running process. If there are more

processes, the rest will have to wait until the CPU is free and can be rescheduled.

Scheduling Queues:

As processes enter the system, they are put into a job queue, which consists of all processes in the system.

56

The processes that are residing in main memory and are ready and waiting to execute are kept on a list

called the ready queue.

This queue is generally stored as a

linked list. A ready-queue header contains

pointers to the first and final PCBs in the list.

Each PCB includes a pointer field that points

to the next PCB in the ready queue.

The system also includes other queues. When

a process is allocated the CPU, it executes for

a while and eventually quits, is interrupted, or

waits for the occurrence of a particular event,

such as the completion of an I/O request.

Suppose the process makes an I/O request to a

shared device, such as a disk.

Since there are many processes in the

system, the disk may be busy with the I/O request of some other process. The process therefore may have to wait

for the disk. The list of processes waiting for a particular I/O device is called a device queue. Each device has its

own device queue (following Figure).

A common representation of process scheduling

is a queuing diagram, such as that in Figure. Each

rectangular box represents a queue. Two types of queues

are present: the ready queue and a set of device queues.

The circles represent the resources that serve the queues,

and the arrows indicate the flow of processes in the

system.

A new process is initially put in the ready

queue. It waits there until it is selected for execution, or

dispatched. Once the process is allocated the CPU and is executing, one of several events could occur:

• The process could issue an I/O request and then be placed in an I/O queue.

• The process could create a new child process and wait for the child’s termination.

• The process could be removed forcibly from the CPU, as a result of an interrupt, and be put back in

 the ready queue.

57

In the first two cases, the process eventually switches from the waiting state to the ready state and is then

put back in the ready queue. A process continues this cycle until it terminates, at which time it is removed from all

queues and has its PCB and resources deallocated.

Schedulers:

A process migrates among the various scheduling queues throughout its lifetime. The operating system

must select, for scheduling purposes, processes from these queues in some fashion. The selection process is carried

out by the appropriate scheduler.

Often, in a batch system, more processes are submitted than can be executed immediately. These processes

are spooled to a mass-storage device (typically a disk), where they are kept for later execution.

The long-term scheduler, or job scheduler, selects processes from this pool and loads them into memory

for execution.

The short-term scheduler, or CPU scheduler, selects from among the processes that are ready to execute

and allocates the CPU to one of them.

The long-term scheduler executes much less frequently; minutes may separate the creation of one new

process and the next. The long-term scheduler controls the degree of multiprogramming (the number of

processes in memory).

Some operating systems, such as time-sharing systems, may introduce an additional, intermediate level of

scheduling. This medium-term scheduler is diagrammed in Figure. The key idea behind a medium-term

scheduler is that sometimes it can be advantageous to remove a process from memory (and from active contention

for the CPU) and thus reduce the degree of multiprogramming. Later, the process can be reintroduced into

memory, and its execution can be continued where it left off. This scheme is called swapping. The process is

swapped out, and is later swapped in, by the medium-term scheduler. Swapping may be necessary to improve the

process mix or because a change in memory requirements has overcommitted available memory, requiring

memory to be freed up.

Context Switch:

Switching the CPU to another process

requires performing a state save of the current

process and a state restore of a different process.

This task is known as a context switch.

When a context switch occurs, the

kernel saves the context of the old process in its

PCB and loads the saved context of the new

process scheduled to run.

58

Context-switch time is pure overhead, because the system does no useful work while switching. Switching

speed varies from machine to machine, depending on the memory speed, the number of registers that must be

copied, and the existence of special instructions (such as a single instruction to load or store all registers). A typical

speed is a few milliseconds.

OPERATIONS ON PROCESSES

The processes in most systems can execute concurrently, and they may be created and deleted

dynamically. Thus, these systems must provide a mechanism for process creation and termination.

In this section, we explore the mechanisms involved in creating processes and illustrate process creation on

UNIX and Windows systems.

Process Creation

During the course of execution, a process may create several new processes.

As mentioned earlier,

the creating process is called a parent process, and the new processes are called the children of that

process.

Each of these new processes may in turn create other processes, forming a tree of processes.

Most operating

systems (including UNIX,

Linux, and Windows)

identify processes according

to a unique process

identifier (or pid), which is

typically an integer number.

The pid provides a

unique value for each

process in the system, and it

can be used as an index to

access various attributes of

a process With in the kernel.

In general, when a process creates a child process, that child process will need certain resources (CPU

time, memory, files, I/O devices) to accomplish its task.

59

 A child process may be able to obtain its resources directly from the operating system, or it may be

constrained to a subset of the resources of the parent process. The parent may have to partition its resources among

its children, or it may be able to share some resources (such as memory or files) among several of its children.

Restricting a child process to a subset of the parent’s resources prevents any process from overloading the

system by creating too many child processes.

When a process creates a new process, two possibilities for execution exist:

1. The parent continues to execute concurrently with its children.

2. The parent waits until some or all of its children have terminated.

There are also two address-space possibilities for the new process:

1. The child process is a duplicate of the parent process (same program and data as the parent).

 2. The child process has a new program loaded into it.

Figure - Creating a separate process using the

UNIX fork() system call.

The C program shown in above Figure

illustrates the UNIX system calls previously

described. We now have two different processes

running copies of the same program. The only

difference is that the value of pid (the process

identifier) for the child process is zero, while that

for the parent is an integer

value greater than zero (in fact, it is the actual pid

of the child process).

The child process inherits privileges and

scheduling attributes from the parent, as well

certain resources, such as open files. The child

process then overlays its address space with the UNIX command /bin/ls (used to get a directory listing) using the

execlp() system call (execlp() is a version of the exec() system call).

60

The parent waits for the child process to complete with the wait() system call. When the child process

completes (by either implicitly or explicitly invoking exit()), the parent process resumes from the call to wait(),

where it completes using the exit() system call. This is also illustrated in the following Figure.

Of course, there is nothing to prevent the child from not invoking exec()and continuing to execute as a

copy of the parent process. In this scenario, the parent and child are concurrent processes running the same code

instructions. Because the child is a copy of the parent, each process has its own copy of any data.

Process Termination

A process terminates when it finishes executing its final statement and asks the operating system to delete

it by using the exit() system call. At that point, the process may return a status value (typically an integer) to its

parent process (via the wait() system call).

All the resources of the process—including physical and virtual memory, open files, and I/O buffers—are

deallocated by the operating system.

Termination can occur in other circumstances as well. A process can cause the termination of another

process via an appropriate system call (for example, TerminateProcess() in Windows).

Usually, such a system call can be invoked only by the parent of the process that is to be terminated.

Otherwise, users could arbitrarily kill each other’s jobs. Note that a parent needs to know the identities of its

children if it is to terminate them.

Thus, when one process creates a new process, the identity of the newly created process is passed to the

parent.

A parent may terminate the execution of one of its children for a variety of reasons, such as these:

 The child has exceeded its usage of some of the resources that it has been allocated. (To determine whether

this has occurred, the parent must have a mechanism to inspect the state of its children.)

 The task assigned to the child is no longer required.

 The parent is exiting, and the operating system does not allow a child to continue if its parent terminates.

61

Some systems do not allow a child to exist if its parent has terminated. In such systems, if a process

terminates (either normally or abnormally), then all its children must also be terminated. This phenomenon,

referred to as cascading termination, is normally initiated by the operating system.

To illustrate process execution and termination, consider that, in Linux and UNIX systems, we can

terminate a process by using the exit() system call, providing an exit status as a parameter:

/* exit with status 1 */

exit(1);

In fact, under normal termination, exit() may be called either directly (as shown above) or indirectly (by a

return statement in main()).

INTERPROCESS COMMUNICATION

Processes executing concurrently in the operating system may be either independent processes or

cooperating processes.

 A process is independent if it cannot affect or be affected by the other processes executing in the system.

Any process that does not share data with any other process is independent.

A process is cooperating if it can affect or be affected by the other processes executing in the system.

Clearly, any process that shares data with other processes is a cooperating process.

There are several reasons for providing

an environment that allows process cooperation:

• Information sharing. Since several users may

be interested in the same piece of information.

we must provide an environment to allow

concurrent access to such information.

• Computation speedup. If we want a particular

task to run faster, we must break it into subtasks,

each of which will be executing in parallel with

the others.

• Modularity. We may want to construct the

system in a modular fashion, dividing the system

functions into separate processes or threads..

• Convenience. Even an individual user may

work on many tasks at the same time. For instance, a user may be editing, listening to music, and compiling in

parallel.

62

Cooperating processes require an interprocess communication (IPC) mechanism that will allow them to

exchange data and information. There are two fundamental models of interprocess communication:

 Shared memory

 Message passing.

In the shared-memory model, a region of memory that is shared by cooperating processes is established.

Processes can then exchange information by reading and writing data to the shared region.

In the message-passing model, communication takes place by means of messages exchanged between the

cooperating processes.

 The two communications models are contrasted in above Figure.

Both of the models just mentioned are common in operating systems, and many systems implement both.

Message passing is useful for exchanging smaller amounts of data, because no conflicts need be

avoided. Message passing is also easier to implement in a distributed system than shared memory.

Shared memory can be faster than message passing, since message-passing systems are typically

implemented using system calls and thus require the more time-consuming task of kernel intervention. In

shared-memory systems, system calls are required only to establish shared memory regions. Once shared

memory is established, all accesses are treated as routine memory accesses, and no assistance from the

kernel is required.

Shared-Memory Systems

Interprocess communication using shared memory requires communicating processes to establish a region

of shared memory.

They can then exchange information by reading and writing data in the shared areas.

The form of the data and the location are determined by these processes and are not under the operating

system’s control.

The processes are also responsible for ensuring that they are not writing to the same location

simultaneously.

To illustrate the concept of cooperating processes, let’s consider the producer – consumer problem,

which is a common paradigm for cooperating processes. A producer process produces information that is

consumed by a consumer process.

For example, a compiler may produce assembly code that is consumed by an assembler. The assembler, in

turn, may produce object modules that are consumed by the loader.

63

The producer – consumer problem also provides a useful metaphor for the client – server paradigm. We

generally think of a server as a producer and a client as a consumer. For example, a web server produces (that is,

provides) HTML files and images, which are consumed (that is, read) by the client web browser requesting the

resource.

One solution to the producer – consumer problem uses shared memory.

To allow producer and consumer processes to run concurrently, we must have available a buffer of items that

can be filled by the producer and emptied by the consumer. This buffer will reside in a region of memory that is

shared by the producer and consumer processes. A producer can produce one item while the consumer is

consuming another item. The producer and consumer must be synchronized, so that the consumer does not try to

consume an item that has not yet been produced.

while (true)

{

/* produce an item in next produced */

while (((in + 1) % BUFFER SIZE) == out)

 ; /* do nothing */

 buffer[in] = next produced;

 in = (in + 1) % BUFFER SIZE;

 }

The producer process using shared memory.

Two types of buffers can be used.

The unbounded buffer places no practical limit on the size of the buffer. The consumer may have to

wait for new items, but the producer can always produce new items.

The bounded buffer assumes a fixed buffer size. In this case, the consumer must wait if the buffer is

empty, and the producer must wait if the buffer is full.

Message-Passing Systems

The shared-memory environment requires that these processes share a region of memory and that the code

for accessing and manipulating the shared memory be written explicitly by the application programmer.

Another way to achieve the same effect is for the operating system to provide the means for cooperating

processes to communicate with each other via a message-passing facility.

Message passing provides a mechanism to allow processes to communicate and to synchronize their

actions without sharing the same address space. It is particularly useful in a distributed environment, where the

communicating processes may reside on different computers connected by a network.

For example, an Internet chat program could be designed so that chat participants communicate with one

another by exchanging messages.

A message-passing facility provides at least two operations:

64

send(message) receive(message)

Messages sent by a process can be either fixed or variable in size.

If only fixed-sized messages can be sent, the system-level implementation is straight-forward. This

restriction, however, makes the task of programming more difficult.

Conversely, variable-sized messages require a more complex system- level implementation, but the

programming task becomes simpler.

If processes P and Q want to communicate, they must send messages to and receive messages from each

other: a communication link must exist between them.

This link can be implemented in a variety of ways. We are concerned here not with the link’s physical

implementation (such as shared memory, hardware bus, or network) but rather with its logical implementation.

Here are several methods for logically implementing a link and the send()/receive() operations:

 Direct or indirect communication

 Synchronous or asynchronous communication

 Automatic or explicit buffering

Naming

Processes that want to communicate must have a way to refer to each other.

They can use either direct or indirect communication.

Under direct communication, each process that wants to communicate must explicitly name the

recipient or sender of the communication. In this scheme, the send() and receive() primitives are defined as:

 send(P, message)— Send a message to process P.

 receive(Q, message)— Receive a message from process Q.

A communication link in this scheme has the following properties:

 A link is established automatically between every pair of processes that want to communicate. The

processes need to know only each other ’s identity to communicate.

 A link is associated with exactly two processes.

 Between each pair of processes, there exists exactly one link.

Synchronization

Communication between processes takes place through calls to send() and receive() primitives. There are

different design options for implementing each primitive. Message passing may be either blocking or

nonblocking— also known as synchronous and asynchronous. (Throughout this text, you will encounter

the concepts of synchronous and asynchronous behavior in relation to various operating-system algorithms.)

65

 Blocking send. The sending process is blocked until the message is received by the receiving process or

by the mailbox.

 Nonblocking send. The sending process sends the message and resumes operation.

 Blocking receive. The receiver blocks until a message is available.

 Nonblocking receive. The receiver retrieves either a valid message or a null.

Buffering

Whether communication is direct or indirect, messages exchanged by communicating processes reside in a

temporary queue. Basically, such queues can be implemented in three ways:

 Zero capacity. The queue has a maximum length of zero; thus, the link cannot have any messages

waiting in it. In this case, the sender must block until the recipient receives the message.

 Bounded capacity. The queue has finite length n; thus, at most n messages can reside in it. If the

queue is not full when a new message is sent, the message is placed in the queue (either the message is

copied or a pointer to the message is kept), and the sender can continue execution without waiting.

The link’s capacity is finite, however. If the link is full, the sender must block until space is available

in the queue.

 Unbounded capacity. The queue’s length is potentially infinite; thus, any number of messages can

wait in it. The sender never blocks.

COMMUNICATION IN CLIENT – SERVER SYSTEMS

how processes can communicate using shared memory and message passing?.

These techniques can be used for communication in client – server systems. Communication in client –

server systems may use

(1) sockets,

(2) remote procedure calls (RPCs),

(3) pipes.

Pipes provide a relatively simple ways for processes to communicate with one another. Ordinary pipes allow

communication between parent and child processes, while named pipes permit unrelated processes to

communicate.

Sockets:

A socket is defined as an endpoint for communication.

A socket is defined as an endpoint for communication. A connection between a pair of applications

consists of a pair of sockets, one at each end of the communication channel.

66

 A pair of processes communicating over a network employs a pair of sockets — one for each process. A

socket is identified by an IP address concatenated with a port number.

In general, sockets use a client – server architecture. The server waits for incoming client requests by

listening to a specified port.

Once a request is received, the server accepts a connection from the client socket to complete the

connection.

Servers implementing specific services (such as telnet, FTP, and HTTP) listen to well-known ports (a

telnet server listens to port 23; an FTP server listens to port 21; and a web, or HTTP, server listens to port

80).

All ports below 1024 are considered well known; we can use them to implement standard services.

When a client process initiates a request for a connection,

it is assigned a port by its host computer. This port has

some arbitrary number greater than 1024. For example, if

a client on host X with IP address 146.86.5.20 wishes to

establish a connection with a web server (which is

listening on port 80) at address 161.25.19.8, host X may

be assigned port 1625. The connection will consist of a

pair of sockets: (146.86.5.20:1625) on host X and

(161.25.19.8:80) on the web server. This situation is

illustrated in Figure 3.20.

The packets traveling between the hosts are delivered to the appropriate process based on the destination

port number.

 Communication channels via sockets may be of one of two major forms:

o Connection-oriented (TCP, Transmission Control Protocol) connections emulate a

telephone connection. All packets sent down the connection are guaranteed to arrive in

good condition at the other end, and to be delivered to the receiving process in the order in

which they were sent. The TCP layer of the network protocol takes steps to verify all

packets sent, re-send packets if necessary, and arrange the received packets in the proper

order before delivering them to the receiving process. There is a certain amount of

overhead involved in this procedure, and if one packet is missing or delayed, then any

packets which follow will have to wait until the errant packet is delivered before they can

continue their journey.

o Connectionless (UDP, User Datagram Protocol) emulate individual telegrams. There is

no guarantee that any particular packet will get through undamaged (or at all), and no

67

guarantee that the packets will get delivered in any particular order. There may even be

duplicate packets delivered, depending on how the intermediary connections are

configured. UDP transmissions are much faster than TCP, but applications must

implement their own error checking and recovery procedures.

 Sockets are considered a low-level communications channel, and processes may often choose to

use something at a higher level, such as those covered in the next two sections.

Remote Procedure Calls

In contrast IPC messages, the messages exchanged in RPC communication are well structured and are thus

no longer just packets of data.

RPCs are another form of distributed communication. An RPC occurs when a process (or thread) calls a

procedure on a remote application.

Each message is addressed to an RPC daemon listening to a port on the remote system, and each contains an

identifier specifying the function to execute and the parameters to pass to that function.

The function is then executed as requested, and any output is sent back to the requester in a separate message.

A port is simply a number included at the start of a message packet. Whereas a system normally has one

network address, it can have many ports within that address to differentiate the many network services it supports.

If a remote process needs a service, it addresses a message to the proper port. For instance, if a system wished

to allow other systems to be able to list its current users, it would have a daemon supporting such an RPC attached

to a port — say, port 3027. Any remote system could obtain the needed information (that is, the list of current

users) by sending an RPC message to port 3027 on the server. The data would be received in a reply message.

The semantics of RPCs allows a client to invoke a procedure on a remote host as it would invoke a procedure

locally.

The RPC system hides the details that allow communication to take place by providing a stub on the client

side.

Typically, a separate stub exists for each separate remote procedure. When the client invokes a remote

procedure, the RPC system calls the appropriate stub, passing it the parameters provided to the remote procedure.

This stub locates the port on the server and marshals the parameters. Parameter marshalling involves

packaging the parameters into a form that can be transmitted over a network. The stub then transmits a message to

the server using message passing.

A similar stub on the server side receives this message and invokes the procedure on the server. If necessary,

return values are passed back to the client using the same technique.

68

On Windows systems, stub code is compiled from a specification written in the Microsoft Interface

Definition Language (MIDL), which is used for defining the interfaces between client and server programs.

Two approaches are common.

First, the binding information may be

predetermined, in the form of fixed

port addresses. At compile time, an

RPC call has a fixed port number

associated with it. Once a program is

compiled, the server cannot change the

port number of the requested service.

Second, binding can be done

dynamically by a rendezvous

mechanism. Typically, an operating

system provides a rendezvous (also

called a matchmaker) daemon on a

fixed RPC port. A client then sends a

message containing the name of the

RPC to the rendezvous daemon

requesting the port address of the RPC

it needs to execute. The port number is

returned, and the RPC calls can be sent

to that port until the process terminates

(or the server crashes). This method

requires the extra overhead of the

initial request but is more flexible than the first approach. Figure 3.23 shows a sample interaction.

Pipes

A pipe acts as a conduit allowing two processes to communicate. Pipes were one of the first IPC

mechanisms in early UNIX systems. They typically provide one of the simpler ways for processes to communicate

with one another, although they also have some limitations. In implementing a pipe, four issues must be

considered:

69

 Does the pipe allow bidirectional communication, or is communication unidirectional?

 If two-way communication is allowed, is it half duplex (data can travel only one way at a time) or full

duplex (data can travel in both directions at the same time)?

 Must a relationship (such as parent–child) exist between the communicating processes?

 Can the pipes communicate over a network, or must the communicating processes reside on the same

machine?

 In the following sections, we explore two common types of pipes used on both UNIX and Windows

systems: ordinary pipes and named pipes.

Ordinary Pipes

Ordinary pipes allow two processes to communicate in standard producer – consumer fashion:

the producer writes to one end of the pipe (the write-end) and the consumer reads from the other end (the read-

end). As a result, ordinary pipes are unidirectional, allowing only one-way communication. If two-way

communication is required, two pipes must be used, with each pipe sending data in a different direction. We next

illustrate constructing ordinary pipes on both UNIX and Windows systems. In both program examples, one process

writes the message Greetings to the pipe, while the other process reads this message from the pipe.

On UNIX systems, ordinary pipes are constructed using the function

pipe(int fd[])

This function creates a pipe that is accessed through the int fd[] file descriptors: fd[0] is the read-end of the

pipe, and fd[1] is the write-end. UNIX treats a pipe as a special type of file. Thus, pipes can be accessed using

ordinary read() and write() system calls.

Named Pipes

Ordinary pipes provide a simple mechanism for allowing a pair of processes to communicate. However,

ordinary pipes exist only while the processes are communicating with one another.

On both UNIX and Windows systems, once the processes have finished communicating and have

terminated, the ordinary pipe ceases to exist.

Named pipes provide a much more powerful communication tool. Communication can be bidirectional,

and no parent – child relationship is required. Once a named pipe is established, several processes can use it for

communication.

In fact, in a typical scenario, a named pipe has several writers. Additionally, named pipes continue to

exist after communicating processes have finished. Both UNIX and Windows systems support named pipes,

although the details of implementation differ greatly. Next, we explore named pipes in each of these systems.

70

MULTI-THREADED PROGRAMMING

What is Thread?

A thread is a flow of execution through the process code, with its own program counter that

keeps track of which instruction to execute next, system registers which hold its current working

variables, and a stack which contains the execution history.

A thread shares with its peer threads few information like code segment, data segment and open

files. When one thread alters a code segment memory item, all other threads see that.

A thread is also called a lightweight process. Threads provide a way to improve application

performance through parallelism. Threads represent a software approach to improving performance of

operating system by reducing the overhead thread is equivalent to a classical process.

Each thread belongs to exactly one process and no thread can exist outside a process. Each thread

represents a separate flow of control. Threads have been successfully used in implementing network

servers and web server. They also provide a suitable foundation for parallel execution of applications on

shared memory multiprocessors. The following figure shows the working of a single-threaded and a

multithreaded process.

Difference between Process and Thread

S.N. Process Thread

1 Process is heavy weight or resource

intensive.

Thread is light weight, taking lesser resources

than a process.

2 Process switching needs interaction with

operating system.

Thread switching does not need to interact

with operating system.

3 In multiple processing environments, each

process executes the same code but has its

own memory and file resources.

All threads can share same set of open files,

child processes.

71

4 If one process is blocked, then no other

process can execute until the first process

is unblocked.

While one thread is blocked and waiting, a

second thread in the same task can run.

5 Multiple processes without using threads

use more resources.

Multiple threaded processes use fewer

resources.

6 In multiple processes each process

operates independently of the others.

One thread can read, write or change another

thread's data.

Advantages of Thread

 Threads minimize the context switching time.

 Use of threads provides concurrency within a process.

 Efficient communication.

 It is more economical to create and context switch threads.

 Threads allow utilization of multiprocessor architectures to a greater scale and efficiency.

Types of Thread

Threads are implemented in following two ways −

 User Level Threads − User managed threads.

 Kernel Level Threads − Operating System managed threads acting on kernel, an operating

system core.

A thread is a basic unit of CPU utilization; it comprises a thread ID, a program counter, a register

set, and a stack. It shares with other threads belonging to the same process its code section, data section,

and other operating-system resources, such as open files and signals.

A traditional (or heavyweight) process has a

single thread of control. If a process has multiple

threads of control, it can perform more than one

task at a time. The following Figure illustrates the

difference between a traditional single-threaded

process and a multithreaded process.

72

Motivation

Most software applications that run on modern computers are multithreaded. An application

typically is implemented as a separate process with several threads of control.

A web browser might have one thread display images or text while another thread retrieves data

from the network.

For example. A word processor may have a thread for displaying graphics, another thread for

responding to keystrokes from the user, and a third thread for performing spelling and grammar checking

in the background. Applications can also be designed to leverage processing capabilities on multicore

systems. Such applications can perform several CPU-intensive tasks in parallel across the multiple

computing cores.

One solution is to have the server

run as a single process that accepts

requests. When the server receives a

request, it creates a separate process to

service that request. In fact, this process-

creation method was in common use

before threads became popular. Process

creation is time consuming and resource

intensive, however. If the new process will perform the same tasks as the existing process, why incur all

that overhead? It is generally more efficient to use one process that contains multiple threads. If the web-

server process is multithreaded, the server will create a separate thread that listens for client requests.

When a request is made, rather than creating another process, the server creates a new thread to service

the request and resume listening for additional requests. This is illustrated in Figure 4.2.

Finally, most operating-system kernels are now multithreaded. Several threads operate in the kernel,

and each thread performs a specific task, such as managing devices, managing memory, or interrupt

handling. For example, Solaris has a set of threads in the kernel specifically for interrupt handling; Linux

uses a kernel thread for managing the amount of free memory in the system.

73

Benefits

The benefits of multithreaded programming can be broken down into four major categories:

 Responsiveness. Multithreading an interactive application may allow a program to continue

running even if part of it is blocked or is performing a lengthy operation, thereby increasing

responsiveness to the user.

 Resource sharing. Processes can only share resources through techniques such as shared memory

and message passing.

 Economy. Allocating memory and resources for process creation is costly. Because threads

share the resources of the process to which they belong, it is more economical to create and

context-switch threads.

 Scalability. The benefits of multithreading can be even greater in a multiprocessor architecture,

where threads may be running in parallel on different processing cores. A single-threaded process

can run on only one processor, regardless how many are available. We explore this issue further

in the following section.

Multithreading Models

Some operating system provide a combined user level thread and Kernel level thread facility.

Solaris is a good example of this combined approach. In a combined system, multiple threads within

the same application can run in parallel on multiple processors and a blocking system call need not

block the entire process. Multithreading models are three types

 Many to many relationship.

 Many to one relationship.

 One to one relationship.

Many to Many Model

The many-to-many model multiplexes any number of user

threads onto an equal or smaller number of kernel threads.

The following diagram shows the many-to-many threading

model where 6 user level threads are multiplexing with 6 kernel

level threads. In this model, developers can create as many user

threads as necessary and the corresponding Kernel threads can run

in parallel on a multiprocessor machine. This model provides the

best accuracy on concurrency and when a thread performs a

74

blocking system call, the

kernel can schedule another thread for execution.

Many to One Model

Many-to-one model maps many user level threads to one

Kernel-level thread. Thread management is done in user space by

the thread library. When thread makes a blocking system call, the

entire process will be blocked. Only one thread can access the

Kernel at a time, so multiple threads are unable to run in parallel

on multiprocessors.

If the user-level thread libraries are implemented in the

operating system in such a way that the system does not support

them, then the Kernel threads use the many-to-one relationship

modes.

One to One Model

There is one-to-one relationship of user-level thread to the kernel-

level thread. This model provides more concurrency than the

many-to-one model. It also allows another thread to run when a

thread makes a blocking system call. It supports multiple threads to

execute in parallel on microprocessors.

Disadvantage of this model is that creating user thread

requires the corresponding Kernel thread. OS/2, windows NT and

windows 2000 use one to one relationship model.

Difference between User-Level & Kernel-Level Thread

S.N. User-Level Threads Kernel-Level Thread

1 User-level threads are faster to create and

manage.

Kernel-level threads are slower

to create and manage.

2 Implementation is by a thread library at

the user level.

Operating system supports

creation of Kernel threads.

75

3 User-level thread is generic and can run

on any operating system.

Kernel-level thread is specific to

the operating system.

4 Multi-threaded applications cannot take

advantage of multiprocessing.

Kernel routines themselves can

be multithreaded.

Threading Issues

The fork() and exec() System Calls

Recall that when fork() is called, a separate, duplicate process is created

• How should fork() behave in a multithreaded program? - Should all threads be duplicated?

- Should only the thread that made the call to fork() be duplicated?

• In some systems, diff erent versions of fork() exist depending on the desired behavior

 - Some UNIX systems have fork1() and forkall() • fork1() only duplicates the calling thread

• forkall() duplicates all of the threads in a process

- In a POSIX-compliant system, fork() behaves the same as fork1()

• The exec() system call continues to behave as expected - Replaces the entire process that called it,

including all threads

• If planning to call exec() after fork(), then there is no need to duplicate all of the threads in the calling

process - All threads in the child process will be terminated when exec() is called

- Use fork1(), rather than forkall() if using in conjunction with exec()

Signal Handling

Signals are used in UNIX systems to notify a process that a particular event has occurred

- CTRL-C is an example of an asynchronous signal that might be sent to a process

• An asynchronous signal is one that is generated from outside the process that receives it

- Divide by 0 is an example of a synchronous signal that might be sent to a process

• A synchronous signal is delivered to the same process that caused the signal to occur

• All signals follow the same basic pattern: - A signal is generated by particular event

- The signal is delivered to a process

- The signal is handled by a signal handler (all signals are handled exactly once)

Signal handling is straightforward in a single-threaded process - The one (and only) thread in the process

receives and handles the signal

In a multithreaded program, where should signals be delivered? - Options:

(1) Deliver the signal to the thread to which the signal applies

76

(2) Deliver the signal to every thread in the process

(3) Deliver the signal only to certain threads in the process

(4) Assign a specific thread to receive all signals for the process

• Option 1 - Deliver the signal to the thread to which the signal applies - Most likely option when

handling synchronous signals (e.g. only the thread that attempts to divide by zero needs to know of the

error)

• Option 2 - Deliver the signal to every thread in the process - Likely to be used in the event that the

process is being terminated (e.g. a CTRLC is sent to terminate the process, all threads need to receive this

signal and terminate)

Thread Cancellation

• Thread cancellation is the act of terminating a thread before it has completed - Example - clicking the

stop button on your web browser will stop the thread that is rendering the web page

• The thread to be cancelled is called the target thread • Threads can be cancelled in a couple of ways -

Asynchronous cancellation terminates the target thread immediately

• Thread may be in the middle of writing data ... not so good

- Deferred cancellation allows the target thread to periodically   check if it should be cancelled

• Allows thread to terminate itself in an orderly fashion

 Threads that are no longer needed may be cancelled by another thread in one of two ways:

1. Asynchronous Cancellation cancels the thread immediately.

2. Deferred Cancellation sets a flag indicating the thread should cancel itself when it is

convenient. It is then up to the cancelled thread to check this flag periodically and exit

nicely when it sees the flag set.

 (Shared) resource allocation and inter-thread data transfers can be problematic with

asynchronous cancellation.

Thread-Local Storage

 Most data is shared among threads, and this is one of the major benefits of using threads in the

first place.

 However sometimes threads need thread-specific data also.

 Most major thread libraries (pThreads, Win32, Java) provide support for thread-specific data,

known as thread-local storage or TLS. Note that this is more like static data than local variables,

because it does not cease to exist when the function ends.

77

Scheduler Activations

 Many implementations of threads provide a virtual processor as an

interface between the user thread and the kernel thread, particularly for the

many-to-many or two-tier models.

 This virtual processor is known as a "Lightweight Process", LWP.

o There is a one-to-one correspondence between LWPs and

kernel threads.

o The number of kernel threads available, (and hence the

number of LWPs) may change dynamically.

o The application (user level thread library) maps user

threads onto available LWPs.

o kernel threads are scheduled onto the real processor(s) by

the OS.

o The kernel communicates to the user-level thread library when certain events occur (such

as a thread about to block) via an upcall, which is handled in the thread library by an

upcall handler. The upcall also provides a new LWP for the upcall handler to run on,

which it can then use to reschedule the user thread that is about to become blocked. The

OS will also issue upcalls when a thread becomes unblocked, so the thread library can

make appropriate adjustments.

 If the kernel thread blocks, then the LWP blocks, which blocks the user thread.

 Ideally there should be at least as many LWPs available as there could be concurrently blocked

kernel threads. Otherwise if all LWPs are blocked, then user threads will have to wait for one to

become available.

78

PROCESS SCHEDULING

CPU Scheduling

CPU scheduling is the basis of multiprogrammed operating systems. By switching the CPU among

processes, the operating system can make the computer more productive. In this chapter, we introduce

basic CPU-scheduling concepts and present several CPU- scheduling algorithms. We also consider the

problem of selecting an algorithm for a particular system.

Basic Concepts

In a single-processor system, only one process can run

at a time. Others must wait until the CPU is free and can be

rescheduled. The objective of multiprogramming is to have

some process running at all times, to maximize CPU utilization.

The idea is relatively simple. A process is executed until it must

wait, typically for the completion of some I/O request. In a

simple computer system, the CPU then just sits idle. All this

waiting time is wasted; no useful work is accomplished. With

multiprogramming, we try to use this time productively.

Several processes are kept in memory at one time.

When one process has to wait, the operating system

takes the CPU away from that process and gives the CPU to

another process. This pattern continues. Every time one process

has to wait, another process can take over use of the CPU.

Scheduling of this kind is a fundamental operating-system function. Almost all computer

resources are scheduled before use. The CPU is, of course, one of the primary computer resources. Thus,

its scheduling is central to operating-system design.

CPU – I/O Burst Cycle The success of CPU scheduling depends on an

observed property of processes: process execution consists

of a cycle of CPU execution and I/O wait. Processes

alternate between these two states. Process execution

begins with a CPU burst. That is followed by an I/O

burst, which is followed by another CPU burst, then

another I/O burst, and so on. Eventually, the final CPU

79

burst ends with a system request to terminate execution (Figure 6.1).

The durations of CPU bursts have been measured extensively. Although they vary greatly from

process to process and from computer to computer, they tend to have a frequency curve similar to that

shown in Figure 6.2. The curve is generally characterized as exponential or hyper exponential, with a

large number of short CPU bursts and a small number of long CPU bursts.

An I/O-bound program typically has many short CPU bursts. A CPU-bound program might have a few

long CPU bursts. This distribution can be important in the selection of an appropriate CPU-scheduling

algorithm.

CPU Scheduler

Whenever the CPU becomes idle, the operating system must select one of the processes in the

ready queue to be executed. The selection process is carried out by the short-term scheduler, or CPU

scheduler. The scheduler selects a process from the processes in memory that are ready to execute and

allocates the CPU to that process.

Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue. As we shall see

when we consider the various scheduling algorithms, a ready queue can be implemented as a FIFO

queue, a priority queue, a tree, or simply an unordered linked list. Conceptually, however, all the

processes in the ready queue are lined up waiting for a chance to run on the CPU. The records in the

queues are generally process control blocks (PCBs) of the processes.

Preemptive Scheduling

CPU-scheduling decisions may take place under the following four circum-stances:

When a process switches from the running state to the waiting state (for example, as the result of

an I/O request or an invocation of wait() for the termination of a child process)

 When a process switches from the running state to the ready state (for example, when an interrupt

occurs)

 When a process switches from the waiting state to the ready state (for example, at completion of

I/O)

 When a process terminates

For situations 1 and 4, there is no choice in terms of scheduling. A new process (if one exists in the

ready queue) must be selected for execution. There is a choice, however, for situations 2 and 3.

When scheduling takes place only under circumstances 1 and 4, we say that the scheduling scheme is

nonpreemptive or cooperative. Otherwise, it is preemptive. Under nonpreemptive scheduling, once the

80

CPU has been allocated to a process, the process keeps the CPU until it releases the CPU either by

terminating or by switching to the waiting state. This scheduling method was used by Microsoft

Windows 3.x. Windows 95 introduced preemptive scheduling, and all subsequent versions of Windows

operating systems have used preemptive scheduling. The Mac OS X operating system for the Macintosh

also uses preemptive scheduling; previous versions of the Macintosh operating system relied on

cooperative scheduling. Cooperative scheduling is the only method that can be used on certain hardware

platforms, because it does not require the special hardware (for example, a timer) needed for preemptive

scheduling.

Another component involved in the CPU-scheduling function is the dispatcher. The dispatcher is the

module that gives control of the CPU to the process selected by the short-term scheduler. This function

involves the following:

 Switching context

 Switching to user mode

 Jumping to the proper location in the user program to restart that program

The dispatcher should be as fast as possible, since it is invoked during every process switch. The

time it takes for the dispatcher to stop one process and start another running is known as the dispatch

latency.

Scheduling Criteria

Different CPU-scheduling algorithms have different properties, and the choice of a particular

algorithm may favor one class of processes over another. In choosing which algorithm to use in a

particular situation, we must consider the properties of the various algorithms.

Many criteria have been suggested for comparing CPU-scheduling algorithms. Which

characteristics are used for comparison can make a substantial difference in which algorithm is judged to

be best. The criteria include the following:

 CPU utilization. We want to keep the CPU as busy as possible. Conceptually, CPU

utilization can range from 0 to 100 percent. In a real system, it should range from 40 percent

(for a lightly loaded system) to 90 percent (for a heavily loaded system).

 Throughput. If the CPU is busy executing processes, then work is being done. One measure

of work is the number of processes that are completed per time unit, called throughput. For

long processes, this rate may be one process per hour; for short transactions, it may be ten

processes per second.

81

 Turnaround time. From the point of view of a particular process, the important criterion is

how long it takes to execute that process. The interval from the time of submission of a

process to the time of completion is the turnaround time. Turnaround time is the sum of the

periods spent waiting to get into memory, waiting in the ready queue, executing on the CPU,

and doing I/O.

 Waiting time. The CPU-scheduling algorithm does not affect the amount of time during

which a process executes or does I/O. It affects only the amount of time that a process spends

waiting in the ready queue. Waiting time is the sum of the periods spent waiting in the ready

queue.

Response time. In an interactive system, turnaround time may not be the best criterion.

Often, a process can produce some output fairly early and can continue computing new

results while previous results are being output to the user. Thus, another measure is the time

from the submission of a request until the first response is produced. This measure, called

response time, is the time it takes to start responding, not the time it takes to output the

response. The turnaround time is generally limited by the speed of the output device.

CPU-SCHEDULING ALGORITHMS

CPU scheduling deals with the problem of deciding which of the processes in the ready queue is

to be allocated the CPU. There are many different CPU-scheduling algorithms. In this section, we

describe several of them.

First-Come, First-Served Scheduling

By far the simplest CPU-scheduling algorithm is the first-come, first-served (FCFS) scheduling

algorithm. With this scheme, the process that requests the CPU first is allocated the CPU first. The

implementation of the FCFS policy is easily managed with a FIFO queue. When a process enters the

ready queue, its PCB is linked onto the tail of the queue. When the CPU is free, it is allocated to the

process at the head of the queue. The running process is then removed from the queue. The code for

FCFS scheduling is simple to write and understand.

On the negative side, the average waiting time under the FCFS policy is often quite long.

Consider the following set of processes that arrive at time 0, with the length of the CPU burst given in

milliseconds:

Process Burst Time

P1 24

82

P2 3

P3 3

If the processes arrive in the order P1, P2, P3, and are served in FCFS order, we get the result

shown in the following Gantt chart, which is a bar chart that illustrates a particular schedule, including

the start and finish times of each of the participating processes:

P1 P2 P3

0 24 27 30

The waiting time is 0 milliseconds for process P1 , 24 milliseconds for process P2 , and 27

milliseconds for process P3. Thus, the average waiting time is (0+24 + 27)/3 = 17 milliseconds. If the

processes arrive in the order P2, P3 , P1, however, the results will be as shown in the following Gantt

chart:

P2 P3 P1

0 3 6 30

The average waiting time is now (6 + 0 + 3)/3 = 3 milliseconds. This reduction is substantial.

Thus, the average waiting time under an FCFS policy is generally not minimal and may vary

substantially if the processes’ CPU burst times vary greatly.

Shortest-Job-First Scheduling

A different approach to CPU scheduling is the shortest-job-first (SJF) scheduling algorithm.

This algorithm associates with each process the length of the process’s next CPU burst. When the CPU is

available, it is assigned to the process that has the smallest next CPU burst. If the next CPU bursts of two

processes are the same, FCFS scheduling is used to break the tie. Note that a more appropriate term for

this scheduling method would be the shortest-next-CPU-burst algorithm, because scheduling depends on

the length of the next CPU burst of a process, rather than its total length. We use the term SJF because

most people and textbooks use this term to refer to this type of scheduling.

As an example of SJF scheduling, consider the following set of processes, with the length of the

CPU burst given in milliseconds:

Process Burst Time

P1 6

83

P2 8

P3 7

P4 3

Using SJF scheduling, we would schedule these processes according to the following Gantt chart:

 P4 P1 P3 P2

0 3 9 16 24

The waiting time is 3 milliseconds for process P1, 16 milliseconds for process P2, 9 milliseconds

for process P3, and 0 milliseconds for process P4. Thus, the average waiting time is (3 + 16 + 9 + 0)/4 = 7

milliseconds. By comparison, if we were using the FCFS scheduling scheme, the average waiting time

would be 10.25 milliseconds.

Priority Scheduling

The SJF algorithm is a special case of the general priority-scheduling algorithm. A priority is

associated with each process, and the CPU is allocated to the process with the highest priority. Equal-

priority processes are scheduled in FCFS order. An SJF algorithm is simply a priority algorithm where

the priority (p) is the inverse of the (predicted) next CPU burst. The larger the CPU burst, the lower the

priority, and vice versa.

Note that we discuss scheduling in terms of high priority and low priority. Priorities are generally

indicated by some fixed range of numbers, such as 0 to 7 or 0 to 4,095. However, there is no general

agreement on whether 0 is the highest or lowest priority. Some systems use low numbers to represent low

priority; others use low numbers for high priority. This difference can lead to confusion. In this text, we

assume that low numbers represent high priority.

As an example, consider the following set of processes, assumed to have arrived at time 0 in the

order P1 , P2, · · ·, P5 , with the length of the CPU burst given in milliseconds:

Process Burst Time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

84

P5 5 2

Using priority scheduling, we would schedule these processes according to the following Gantt

chart:

 P2 P5 P1 P3 P4

0 1 6 16 18 19

The average waiting time is 8.2 milliseconds.

Priorities can be defined either internally or externally.

Internally defined priorities use some measurable quantity or quantities to compute the

priority of a process. For example, time limits, memory requirements, the number of open files, and

the ratio of average I/O burst to average CPU burst have been used in computing priorities.

External priorities are set by criteria outside the operating system, such as the importance of

the process, the type and amount of funds being paid for computer use, the department sponsoring

the work, and other, often political, factors.

Round-Robin Scheduling

The round-robin (RR) scheduling algorithm is designed especially for time-sharing systems. It is

similar to FCFS scheduling, but preemption is added to enable the system to switch between processes. A

small unit of time, called a time quantum or time slice, is defined. A time quantum is generally from 10

to 100 milliseconds in length. The ready queue is treated as a circular queue.

The CPU scheduler goes around the ready queue, allocating the CPU to each process for a time

interval of up to 1 time quantum.

To implement RR scheduling, we again treat the ready queue as a FIFO queue of processes. New

processes are added to the tail of the ready queue. The CPU scheduler picks the first process from the

ready queue, sets a timer to interrupt after 1 time quantum, and dispatches the process.

One of two things will then happen. The process may have a CPU burst of less than 1 time

quantum. In this case, the process itself will release the CPU voluntarily. The scheduler will then proceed

to the next process in the ready queue. If the CPU burst of the currently running process is longer than 1

time quantum, the timer will go off and will cause an interrupt to the operating system. A context switch

85

will be executed, and the process will be put at the tail of the ready queue. The CPU scheduler will then

select the next process in the ready queue.

The average waiting time under the RR policy is often long. Consider the following set of

processes that arrive at time 0, with the length of the CPU burst given in milliseconds:

Process Burst Time

P1 24

P2 3

P3 3

If we use a time quantum of 4 milliseconds, then process P1 gets the first 4 milliseconds. Since it

requires another 20 milliseconds, it is preempted after the first time quantum, and the CPU is given to the

next process in the queue, process P2. Process P2 does not need 4 milliseconds, so it quits before its time

quantum expires. The CPU is then given to the next process, process P3. Once each process has received

1 time quantum, the CPU is returned to process P1 for an additional time quantum. The resulting RR

schedule is as follows:

 P1 P2 P3 P1 P1 P1 P1 P1

0 4 7 10 14 18 22 26 30

Let’s calculate the average waiting time for this schedule. P1 waits for 6 milliseconds (10 - 4), P2

waits for 4 milliseconds, and P3 waits for 7 milliseconds. Thus, the average waiting time is 17/3 = 5.66

milliseconds.

In the RR scheduling algorithm, no process is allocated the CPU for more than 1 time quantum in

a row (unless it is the only runnable process). If a process’s CPU burst exceeds 1 time quantum, that

process is preempted and is put back in the ready queue. The RR scheduling algorithm is thus

preemptive.

If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n

of the CPU time in chunks of at most q time units. Each process must wait no longer than (n − 1) × q time

units until its next time quantum. For example, with five processes and a time quantum of 20

milliseconds, each process will get up to 20 milliseconds every 100 milliseconds.

86

The performance of the

RR algorithm depends heavily

on the size of the time quantum.

At one extreme, if the time

quantum is extremely large, the

RR policy

is the same as the FCFS policy.

In contrast, if the time quantum

is extremely small (say, 1 millisecond), the RR approach can result in a large number of context

switches. Assume, for example, that we have only one process of 10 time units. If the quantum is 12

time units, the process finishes in less than 1 time quantum, with no overhead. If the quantum is 6

time units, however, the process requires 2 quanta, resulting in a context switch. If the time quantum

is 1 time unit, then nine context switches will occur, slowing the execution of the process

accordingly (Figure 6.4).

Multiple-Level Queues Scheduling

Multiple-level queues are not an independent scheduling algorithm. They make use of other existing

algorithms to group and schedule jobs with common characteristics.

 Multiple queues are maintained for processes with common characteristics.

 Each queue can have its own scheduling algorithms.

 Priorities are assigned to each queue.

For example, CPU-bound jobs can be scheduled in one queue and all I/O-bound jobs in another queue.

The Process Scheduler then alternately selects jobs from each queue and assigns them to the CPU based

on the algorithm assigned to the queue.

Let’s look at an example of a multilevel

queue scheduling algorithm with five

queues, listed below in order of priority:

 System processes

 Interactive processes

 Interactive editing processes

 Batch processes

 Student processes

87

 Each queue has absolute priority over lower-priority queues. No process in the batch

queue, for example, could run unless the queues for system processes, interactive processes, and

interactive editing processes were all empty. If an interactive editing process entered the ready

queue while a batch process was running, the batch process would be preempted.

88

Multilevel Feedback Queue Scheduling

Normally, when the multilevel queue

scheduling algorithm is used, processes are

permanently assigned to a queue when they

enter the system. If there are separate queues for

foreground and background processes, for

example, processes do not move from one queue

to the other, since processes do not change their

foreground or background nature. This setup has the advantage of low scheduling overhead, but it is

inflexible.

The multilevel feedback queue scheduling algorithm, in contrast, allows a process to move

between queues. The idea is to separate processes according to the characteristics of their CPU bursts. If

a process uses too much CPU time, it will be moved to a lower- priority queue. This scheme leaves I/O-

bound and interactive processes in the higher-priority queues. In addition, a process that waits too long in

a lower-priority queue may be moved to a higher-priority queue. This form of aging prevents starvation.

For example, consider a multilevel feedback queue scheduler with three queues, numbered from 0 to

2 (Figure 6.7). The scheduler first executes all processes in queue 0. Only when queue 0 is empty will it

execute processes in queue 1. Similarly, processes in queue 2 will be executed only if queues 0 and 1 are

empty. A process that arrives for queue 1 will preempt a process in queue 2. A process in queue 1 will in

turn be preempted by a process arriving for queue 0.

A process entering the ready queue is put in queue 0. A process in queue 0 is given a time quantum

of 8 milliseconds. If it does not finish within this time, it is moved to the tail of queue 1. If queue 0 is

empty, the process at the head of queue 1 is given a quantum of 16 milliseconds. If it does not complete,

it is preempted and is put into queue 2. Processes in queue 2 are run on an FCFS basis but are run only

when queues 0 and 1 are empty.

89

PROCESS SYNCHRONIZATION

A cooperating process is one that can affect or be affected by other processes executing in the

system. Cooperating processes can either directly share a logical address space (that is, both code and

data) or be allowed to share data only through files or messages. The former case is achieved through the

use of threads,

The Critical-Section Problem

We begin our consideration of process synchronization by discussing the so-called critical-section

problem. Consider a system consisting of n processes {P0, P1, ..., Pn−1}. Each process has a segment of

code, called a critical section, in which the process may be changing common variables, updating a

table, writing a file, and soon.

The important feature of the system is that, when one process is executing in its critical section,

no other process is allowed to execute in its critical section. That is, no two processes are executing in

their critical sections at the same time.

The critical-section problem is to design a

protocol that the processes can use to cooperate. Each

process must request permission to enter its critical

section.

The section of code implementing this request is

the entry section.

The critical section may be followed by an exit

section.

The remaining code is the remainder section.

The general structure of a typical process Pi is

shown in Figure 5.1. The entry section and exit section are enclosed in boxes to highlight these important

segments of code.

A solution to the critical-section problem must satisfy the following three requirements:

 Mutual exclusion. If process Pi is executing in its critical section, then no other processes

can be executing in their critical sections.

 Progress. If no process is executing in its critical section and some processes wish to enter

their critical sections, then only those processes that are not executing in their remainder

90

sections can participate in deciding which will enter its critical section next, and this

selection cannot be postponed indefinitely.

 Bounded waiting. There exists a bound, or limit, on the number of times that other

processes are allowed to enter their critical sections after a process has made a request to

enter its critical section and before that request is granted.

We assume that each process is executing at a nonzero speed. However, we can make no

assumption concerning the relative speed of the n processes.

At a given point in time, many kernel-mode processes may be active in the operating system. As a

result, the code implementing an operating system (kernel code) is subject to several possible race

conditions. Consider as an example a kernel data structure that maintains a list of all open files in the

system. This list must be modified when a new file is opened or closed (adding the file to the list or

removing it from the list) . If two processes were to open files simultaneously, the separate updates to this

list could result in a race condition. Other kernel data structures that are prone to possible race conditions

include structures for maintaining memory allocation, for maintaining process lists, and for interrupt

handling. It is up to kernel developers to ensure that the operating system is free from such race

conditions.

Two general approaches are used to handle critical sections in operating systems:

preemptive kernels. A preemptive kernel allows a process to be preempted while it is

running in kernel mode.

A nonpreemptive kernel does not allow a process running in kernel mode to be

preempted; a kernel- mode process will run until it exits kernel mode, blocks, or voluntarily yields

control of the CPU.

Obviously, a nonpreemptive kernel is essentially free from race conditions on kernel data

structures, as only one process is active in the kernel at a time. We cannot say the same about preemptive

kernels, so they must be carefully designed to ensure that shared kernel data are free from race

conditions. Preemptive kernels are especially difficult to design for SMP architectures, since in these

environments it is possible for two kernel-mode processes to run simultaneously on different processors.

91

Peterson’s Solution

The classic software-based solution to the critical-section problem known as Peterson’s solution.

Because of the way modern computer architectures perform basic machine-language instructions, such as

load and store, there are no guarantees that Peterson’s solution will work correctly on such architectures.

However, we present the solution because it provides a good algorithmic description of solving the

critical-section problem and illustrates some of

the complexities involved in designing software

that addresses the requirements of mutual

exclusion, progress, and bounded waiting

 Peterson’s solution is restricted to two

processes that alternate execution between their

critical sections and remainder sections. The

processes are numbered P0 and P1. For

convenience, when presenting Pi , we use P j to

denote the other process; that is, j equals 1 − i.

Peterson’s solution requires the two processes to share two data items:

int turn;

boolean flag[2];

The variable turn indicates whose turn it is to enter its critical section. That is, if turn == i, then

process Pi is allowed to execute in its critical section. The flag array is used to indicate if a process is

ready to enter its critical section. For example, if flag[i] is true, this value indicates that Pi is ready to

enter its critical section. With an explanation of these data structures complete, we are now ready to

describe the algorithm shown in Figure 5.2.

To enter the critical section, process Pi first sets flag[i] to be true and then sets turn to the value j ,

thereby asserting that if the other process wishes to enter the critical section, it can do so. If both

processes try to enter at the same time, turn will be set to both i and j at roughly the same time. Only one

of these assignments will last; the other will occur but will be overwritten immediately. The eventual

value of turn determines which of the two processes is allowed to enter its critical section first.

We now prove that this solution is correct. We need to show that:

 Mutual exclusion is preserved.

 The progress requirement is satisfied.

 The bounded-waiting requirement is met.

92

To prove property 1, we note that each Pi enters its critical section only if either flag[j] == false or

turn == i. Also note that, if both processes can be executing in their critical sections at the same time,

then flag[0] == flag[1] == true. These two observations imply that P0 and P1 could not have successfully

executed their while statements at about the same time, since the value of turn can be either 0 or 1 but

cannot be both. Hence, one of the processes — say, Pj — must have successfully executed the while

statement, whereas Pi had to execute at least one additional statement (“turn == j”). However, at that

time, flag[j] == true and turn == j, and this condition will persist as long as Pj is in its critical section; as a

result, mutual exclusion is preserved.

Synchronization Hardware

 To generalize the solution(s) expressed above,

each process when entering their critical section

must set some sort of lock, to prevent other

processes from entering their critical sections

simultaneously, and must release the lock when

exiting their critical section, to allow other

processes to proceed. Obviously it must be

possible to attain the lock only when no other

process has already set a lock. Specific

implementations of this general procedure can get

quite complicated, and may include hardware

solutions as outlined in this section.

 One simple solution to the critical section problem is to simply prevent a process from being

interrupted while in their critical section, which is the approach taken by non preemptive kernels.

Unfortunately this does not work well in multiprocessor environments, due to the difficulties in

disabling and the re-enabling interrupts on all

processors. There is also a question as to how

this approach affects timing if the clock interrupt

is disabled.

 Another approach is for hardware to provide

certain atomic operations. These operations are

guaranteed to operate as a single instruction,

without interruption. One such operation is the

"Test and Set", which simultaneously sets a

boolean lock variable and returns its previous

93

value, as shown in Figures 5.3 and 5.4:

Another variation on the test-and-set is an atomic swap of two booleans, as shown in Figures 5.5 and 5.6:

 The above examples satisfy the mutual exclusion requirement, but unfortunately do not guarantee

bounded waiting. If there are multiple processes

trying to get into their critical sections, there is no

guarantee of what order they will enter, and any

one process could have the bad luck to wait

forever until they got their turn in the critical

section. (Since there is no guarantee as to the

relative rates of the processes, a very fast process

could theoretically release the lock, whip through

their remainder section, and re-lock the lock

before a slower process got a chance. As more

and more processes are involved vying for the same resource, the odds of a slow process getting

locked out completely increase.)

 Figure 5.7 illustrates a solution using test-and-set that does satisfy this requirement, using two

shared data structures, boolean lock and boolean waiting[N], where N is the

number of processes in contention for critical sections:

The key feature of the above algorithm is that a process blocks on the AND of the critical section

being locked and that this process is in the waiting state. When exiting a critical section, the exiting

process does not just unlock the critical section and let the other processes have a free-for-all trying to

get in. Rather it first looks in an orderly progression (starting with the next process on the list) for a

process that has been waiting, and if it finds one, then it releases that particular process from its

waiting state, without unlocking the critical section, thereby allowing a specific process into the

critical section while continuing to block all the others. Only if there are no other processes currently

waiting is the general lock removed, allowing the next process to come along access to the critical

section.

 Unfortunately, hardware level locks are especially difficult to implement in multi-processor

architectures. Discussion of such issues is left to books on advanced computer architecture.

94

95

Mutex Locks :

 The hardware solutions presented above are often

difficult for ordinary programmers to access,

particularly on multi-processor machines, and

particularly because they are often platform-dependent.

 Therefore most systems offer a software API equivalent

called mutex locks or simply mutexes. (For mutual

exclusion)

 The terminology when using mutexes is to acquire a

lock prior to entering a critical section, and to release it when exiting, as shown in Figure

 Just as with hardware locks, the acquire step will block

the process if the lock is in use by another process, and

both the acquire and release operations are atomic.

 Acquire and release can be implemented as shown here,

based on a boolean variable "available":

 One problem with the implementation shown here, (and

in the hardware solutions presented earlier), is the busy

loop used to block processes in the acquire phase. These types of locks are referred to as

spinlocks, because the CPU just sits and spins while blocking the process.

 Spinlocks are wasteful of cpu cycles, and are a really bad idea on single-cpu single-threaded

machines, because the spinlock blocks the entire computer, and doesn't allow any other process to

release the lock. (Until the scheduler kicks the spinning process off of the cpu.)

 On the other hand, spinlocks do not incur the overhead of a context switch, so they are effectively

used on multi-threaded machines when it is expected that the lock will be released after a short

time.

96

Semaphores

A semaphore S is an integer variable that, apart from initialization, is accessed only through two

standard atomic operations: wait() and signal(). The wait() operation was originally termed P (from the

Dutch proberen, “to test”); signal() was originally called V (from verhogen, “to increment”). The

definition of wait() is as follows:

wait(S) {

 while (S <= 0)
 // busy wait

 S--;
 }

The definition of signal() is as follows:

 signal(S) {
S++;

 }

All modifications to the integer value of the semaphore in the wait() and signal() operations must

be executed indivisibly. That is, when one process modifies the semaphore value, no other process can

simultaneously modify that same semaphore value. In addition, in the case of wait(S), the testing of the

integer value of S (S ≤ 0), as well as its possible modification (S--), must be executed without

interruption. We shall see how these operations can be implemented in Section 5.6.2. First, let’s see how

semaphores can be used.

Semaphore Usage

Operating systems often distinguish between counting and binary semaphores. The value of a

counting semaphore can range over an unrestricted domain. The value of a binary semaphore can

range only between 0 and 1. Thus, binary semaphores behave similarly to mutex locks. In fact, on

systems that do not provide mutex locks, binary semaphores can be used instead for providing mutual

exclusion.

Counting semaphores can be used to control access to a given resource consisting of a finite

number of instances. The semaphore is initialized to the number of resources available. Each process that

wishes to use a resource performs a wait() operation on the semaphore (thereby decrementing the count).

When a process releases a resource, it performs a signal() operation (incrementing the count). When the

count for the semaphore goes to 0, all resources are being used. After that, processes that wish to use a

resource will block until the count becomes greater than 0.

We can also use semaphores to solve various synchronization problems. For example, consider

two concurrently running processes: P1 with a statement S1 and P2 with a statement S2 . Suppose we

97

require that S2 be executed only after S1 has completed. We can implement this scheme readily by letting

P1 and P2 share a common semaphore synch, initialized to 0. In process P1, we insert the statements

S1 ;

signal(synch);

In process P2 , we insert the statements

wait(synch);

S2 ;

Because synch is initialized to 0, P2 will execute S2 only after P1 has invoked signal(synch), which is
after statement S1 has been executed.

Semaphore Implementation

 The definitions of the wait() and signal() semaphore operations just described present the same

problem. To overcome the need for busy waiting, we can modify the definition of the wait() and

signal() operations as follows: When a process executes the wait() operation and finds that the

semaphore value is not positive, it must wait. However, rather than engaging in busy waiting, the

process can block itself. The block operation places a process into a waiting queue associated with

the semaphore, and the state of the process is switched to the waiting state. Then control is

transferred to the CPU scheduler, which selects another process to execute.

A process that is blocked, waiting on a semaphore S, should be restarted when some other

process executes a signal() operation. The process is restarted by a wakeup() operation, which

changes the process from the waiting state to the ready state. The process is then placed in the ready

queue. (The CPU may or may not be switched from the running process to the newly ready process,

depending on the CPU-scheduling algorithm.)

To implement semaphores under this definition, we define a semaphore as follows:

typedef struct {

int value;

struct process *list;

} semaphore;

Each semaphore has an integer value and a list of processes list. When a process must wait on a

semaphore, it is added to the list of processes. A signal() operation removes one process from the list

of waiting processes and awakens that process.

Now, the wait() semaphore operation can be defined as

98

wait(semaphore *S) {
S->value--;
if (S->value < 0) {

add this process to S->list;

block();
 }

}

and the signal() semaphore operation can be defined as

signal(semaphore *S) {
S->value++;

if (S->value <= 0) {
remove a process P from S->list;

wakeup(P);
}

 }

The block() operation suspends the process that invokes it. The wakeup(P) operation resumes the

execution of a blocked process P. These two operations are provided by the operating system as basic

system calls.

Note that in this implementation, semaphore values may be negative, whereas semaphore values are

never negative under the classical definition of semaphores with busy waiting. If a semaphore value is

negative, its magnitude is the number of processes waiting on that semaphore. This fact results from

switching the order of the decrement and the test in the implementation of the wait() operation.

Deadlocks and Starvation

The implementation of a semaphore with a waiting queue may result in a situation where two or

more processes are waiting indefinitely for an event that can be caused only by one of the waiting

processes. The event in question is the execution of a signal() operation. When such a state is reached,

these processes are said to be deadlocked.

To illustrate this, consider a system consisting of two processes, P0 and P1, each accessing two

semaphores, S and Q, set to the value 1:

P0 P1

wait(S); wait(Q);
wait(Q); wait(S);

. .

. .

. .
signal(S); signal(Q);
signal(Q); signal(S);

99

Suppose that P0 executes wait(S) and then P1 executes wait(Q). When P0 executes wait(Q), it must

wait until P1 executes signal(Q). Similarly, when P1 executes wait(S) , it must wait until P0 executes

signal(S). Since these signal() operations cannot be executed, P0 and P1 are deadlocked.

We say that a set of processes is in a deadlocked state when every process in the set is waiting for an

event that can be caused only by another process in the set. The events with which we are mainly

concerned here are resource acquisition and release. Other types of events may result in deadlocks, as we

show in Chapter 7. In that chapter, we describe various mechanisms for dealing with the deadlock

problem.

Another problem related to deadlocks is indefinite blocking or starvation, a situation in which

processes wait indefinitely within the semaphore. Indefinite blocking may occur if we remove processes

from the list associated with a semaphore in LIFO (last-in, first-out) order.

Priority Inversion

A scheduling challenge arises when a higher-priority process needs to read or modify kernel data

that are currently being accessed by a lower-priority process — or a chain of lower-priority processes.

Since kernel data are typically protected with a lock, the higher-priority process will have to wait for a

lower-priority one to finish with the resource. The situation becomes more complicated if the lower-

priority process is preempted in favor of another process with a higher priority.

As an example, assume we have three processes — L , M, and H — whose priorities follow the

order L < M < H. Assume that process H requires resource R, which is currently being accessed by

process L. Ordinarily, process H would wait for L to finish using resource R. However, now suppose that

process M becomes runnable, thereby preempting process L. Indirectly, a process with a lower priority —

process M— has affected how long process H must wait for L to relinquish resource R.

This problem is known as priority inversion. It occurs only in systems with more than two

priorities, so one solution is to have only two priorities. That is insufficient for most general-purpose

operating systems, however. Typically these systems solve the problem by implementing a priority-

inheritance protocol.

According to this protocol, all processes that are accessing resources needed by a higher-priority

process inherit the higher priority until they are finished with the resources in question. When they are

finished, their priorities revert to their original values. In the example above, a priority-inheritance

protocol would allow process L to temporarily inherit the priority of process H, thereby preventing

process M from preempting its execution. When process had finished using resource R, it would

100

relinquish its inherited priority from H and assume its original priority. Because resource R would now be

available, process H — not M— would run next.

101

Monitors

 Semaphores can be very useful for solving concurrency

problems, but only if programmers use them properly.

If even one process fails to abide by the proper use of

semaphores, either accidentally or deliberately, then the

whole system breaks down. (And since concurrency

problems are by definition rare events, the problem code

may easily go unnoticed and/or be heinous to debug.)

 For this reason a higher-level language construct has

been developed, called monitors.

Figure - Syntax of a monitor.

Monitor Usage

 A monitor is essentially a class, in which

all data is private, and with the special

restriction that only one method within any

given monitor object may be active at the

same time. An additional restriction is that

monitor methods may only access the

shared data within the monitor and any data

passed to them as parameters. I.e. they

cannot access any data external to the

monitor.

Figure - Schematic view of a monitor

 In order to fully realize the potential of

monitors, we need to introduce one

additional new data type, known as a

condition.

o A variable of type condition has

only two legal operations, wait and

signal. I.e. if X was defined as type

condition, then legal operations

would be X.wait() and X.signal()

o The wait operation blocks a process

102

until some other process calls signal, and adds the blocked process onto a list

associated with that condition.

o The signal process does nothing if there are no processes waiting on that condition.

Otherwise it wakes up exactly one process from the condition's list of waiting

processes. (Contrast this with counting semaphores, which always affect the

semaphore on a signal call.)

But now there is a potential problem - If process P within the monitor issues a signal that would

wake up process Q also within the monitor, then there would be two processes running

simultaneously within the monitor, violating the exclusion requirement. Accordingly there are

two possible solutions to this dilemma:

Signal and wait - When process P issues the signal to wake up process Q, P then waits, either for Q to

leave the monitor or on some other condition.

Signal and continue - When P issues the signal, Q waits, either for P to exit the monitor or for some

other condition.

There are arguments for and against either choice. Concurrent Pascal offers a third alternative - The

signal call causes the signaling process to immediately exit the monitor, so that the waiting process can

then wake up and proceed.

 Java and C# (C sharp) offer monitors bulit-in to the language. Erlang offers similar but

different constructs.

CLASSIC PROBLEMS OF SYNCHRONIZATION

In this section, we present a number of synchronization problems as examples of a large class of

concurrency-control problems. These problems are used for testing nearly every newly proposed

synchronization scheme. In our solutions to the problems, we use semaphores for synchronization, since

that is the traditional way to present such solutions. However, actual implementations of these solutions

could use mutex locks in place of binary semaphores

103

The Bounded-Buffer Problem

The bounded-buffer problem is commonly used to illustrate the power of synchronization

primitives. Here, we present a general structure of this scheme without committing ourselves to any

particular implementation. We provide a related programming project in the exercises at the end of the

chapter.

In our problem, the producer and consumer processes share the following data structures:

int n;
semaphore mutex = 1;
semaphore empty = n;
semaphore full = 0

We assume that the pool consists of n buffers, each capable of holding one item. The mutex

semaphore provides mutual exclusion for accesses to the buffer pool and is initialized to the value 1. The

empty and full semaphores count the number of empty and full buffers. The semaphore empty is

initialized to the value n; the semaphore full is initialized to the value 0.

The code for the producer process is shown in Figure 5.9, and the code for the consumer process

is shown in Figure 5.10. Note the symmetry between the producer and the consumer. We can interpret

this code as the producer producing full buffers for the consumer or as the consumer producing empty

buffers for the producer.

do {
wait(full);
wait(mutex);

. . .
/* remove an item from buffer to next consumed */

. . .
signal(mutex);
signal(empty);

. . .
/* consume the item in next consumed */

. . .
} while (true);

 The structure of the consumer process.

The Readers – Writers Problem

Suppose that a database is to be shared among several concurrent processes. Some of these

processes may want only to read the database, whereas others may want to update (that is, to read and

write) the database. We distinguish between these two types of processes by referring to the former as

readers and to the latter as writers. Obviously, if two readers access the shared data simultaneously, no

104

adverse effects will result. However, if a writer and some other process (either a reader or a writer)

access the database simultaneously, chaos may ensue.

To ensure that these difficulties do not arise, we require that the writers have exclusive access to

the shared database while writing to the database. This synchronization problem is referred to as the

readers–writers problem. Since it was originally stated, it has been used to test nearly every new

synchronization primitive. The readers – writers problem has several variations, all involving priorities.

The simplest one, referred to as the first readers – writers problem, requires that no reader be kept

waiting unless a writer has already obtained permission to use the shared object. In other words, no

reader should wait for other readers to finish simply because a writer is waiting. The second readers–

writers problem requires that, once a writer is ready, that writer perform its write as soon as possible. In

other words, if a writer is waiting to access the object, no new readers may start reading.

A solution to either problem may result in starvation. In the first case, writers may starve; in the

second case, readers may starve. For this reason, other variants of the problem have been proposed. Next,

we present a solution to the first readers – writers problem. See the bibliographical notes at the end of the

chapter for references describing starvation-free solutions to the second readers – writers problem.

In the solution to the first readers – writers problem, the reader processes share the following data

structures:

semaphore rw mutex = 1;
semaphore mutex = 1;
int read count = 0;

The semaphores mutex and rw mutex are initialized to 1; read count is initialized to 0. The

semaphore rw mutex is common to both reader and writer

do {

wait(rw mutex);

. . .

/* writing is performed */

. . .

signal(rw mutex);

} while (true);

Figure 5.11 The structure of a writer process.

processes. The mutex semaphore is used to ensure mutual exclusion when the variable read count is

updated. The read count variable keeps track of how many processes are currently reading the object. The

semaphore rw_mutex functions as a mutual exclusion semaphore for the writers. It is also used by the

105

first or last reader that enters or exits the critical section. It is not used by readers who enter or exit while

other readers are in their critical sections.

The code for a writer process is shown in Figure 5.11; the code for a reader process is shown in

Figure 5.12. Note that, if a writer is in the critical section and n readers are waiting, then one reader is

queued on rw mutex, and n − 1 readers are queued on mutex. Also observe that, when a writer executes

signal(rw mutex), we may resume the execution of either the waiting readers or a single waiting writer.

The selection is made by the scheduler.

The readers – writers problem and its solutions have been generalized to provide reader–writer

locks on some systems. Acquiring a reader – writer lock requires specifying the mode of the lock: either

read or write access. When a process wishes only to read shared data, it requests the reader – writer lock

in read mode. A process wishing to modify the shared data must request the lock in write mode. Multiple

processes are permitted to concurrently acquire a reader – writer lock in read mode, but only one process

may acquire the lock for writing, as exclusive access is required for writers.

The Dining-Philosophers Problem

Consider five philosophers who spend their lives thinking and eating. The philosophers share a

circular table surrounded by five chairs, each belonging to one philosopher. In the center of the table is a

bowl of rice, and the table is laid with five single chopsticks (Figure 5.13).

When a philosopher thinks, she does not interact with her colleagues. From time to time, a

philosopher gets hungry and tries to pick up the two chopsticks that are closest to her (the chopsticks that

are between her and her left and right neighbors).

A philosopher may pick up only one chopstick at a time. Obviously, she cannot pick up a

chopstick that is already in the hand of a neighbor. When a hungry philosopher has both her chopsticks at

the same time, she eats without releasing the chopsticks. When she is finished eating, she puts down both

chopsticks and starts thinking again.

The dining-philosophers problem is considered a classic synchronization problem neither

because of its practical importance nor because computer scientists dislike philosophers but because it is

an example of a large class of concurrency-control problems. It is a simple representation of the need to

allocate several resources among several processes in a deadlock-free and starvation-free manner.

106

One simple solution is to represent

each chopstick with a semaphore. A

philosopher tries to grab a chopstick by

executing a wait() operation on that

semaphore. She releases her chopsticks by

executing the signal() operation on the

appropriate semaphores. Thus, the shared data

are

semaphore chopstick[5];

where all the elements of chopstick are

initialized to 1.

The Structure of Philosopher i as follows:

do {

wait(chopstick[i]);

wait(chopstick[(i+1) % 5]);

. . .

/* eat for awhile */

. . .

signal(chopstick[i]);

signal(chopstick[(i+1) % 5]);

. . .

/* think for awhile */

. . .

} while (true);

Although this solution guarantees that no two neighbors are eating simultaneously, it nevertheless must

be rejected because it could create a deadlock. Suppose that all five philosophers become hungry at the

same time and each grabs her left chopstick. All the elements of chopstick will now be equal to 0. When

each philosopher tries to grab her right chopstick, she will be delayed forever.

Several possible remedies to the deadlock problem are replaced by:

107

 Allow at most four philosophers to be sitting simultaneously at the table.

 Allow a philosopher to pick up her chopsticks only if both chopsticks are available (to do this,

she must pick them up in a critical section).

 Use an asymmetric solution — that is, an odd-numbered philosopher picks up first her left

chopstick and then her right chopstick, whereas an even-numbered philosopher picks up her

right chopstick and then her left chopstick.

we present a solution to the dining-philosophers problem that ensures freedom from deadlocks.

Note, however, that any satisfactory solution to the dining-philosophers problem must guard against the

possibility that one of the philosophers will starve to death. A deadlock-free solution does not necessarily

eliminate the possibility of starvation.

108

DEADLOCKS

In a multiprogramming environment, several processes may compete for a finite number of

resources. A process requests resources; if the resources are not available at that time, the process enters a

waiting state. Sometimes, a waiting process is never again able to change state, because the resources it

has requested are held by other waiting processes. This situation is called a deadlock.

Perhaps the best illustration of a deadlock can be drawn from a law passed by the Kansas

legislature early in the 20th century. It said, in part: “When two trains approach each other at a

crossing, both shall come to a full stop and neither shall start up again until the other has gone.”

Although some applications can identify programs that may deadlock, operating systems typically

do not provide deadlock-prevention facilities, and it remains the responsibility of programmers to ensure

that they design deadlock-free programs.

Deadlock problems can only become more common, given current trends, including larger

numbers of processes, multithreaded programs, many more resources within a system, and an emphasis

on long-lived file and database servers rather than batch systems.

System Model

A system consists of a finite number of resources to be distributed among a number of competing

processes. The resources may be partitioned into several types (or classes), each consisting of some

number of identical instances. CPU cycles, files, and I/O devices (such as printers and DVD drives) are

examples of resource types. If a system has two CPUs, then the resource type CPU has two instances.

Similarly, the resource type printer may have five instances.

If a process requests an instance of a resource type, the allocation of any instance of the type

should satisfy the request. If it does not, then the instances are not identical, and the resource type classes

have not been defined properly.

For example, a system may have two printers. These two printers may be defined to be in the

same resource class if no one cares which printer prints which output. However, if one printer is on the

ninth floor and the other is in the basement, then people on the ninth floor may not see both printers as

equivalent, and separate resource classes may need to be defined for each printer.

A process must request a resource before using it and must release the resource after using it. A

process may request as many resources as it requires to carry out its designated task. Obviously, the

number of resources requested may not exceed the total number of resources available in the system. In

other words, a process cannot request three printers if the system has only two.

109

Under the normal mode of operation, a process may utilize a resource in only the following

sequence:

 Request. The process requests the resource. If the request cannot be granted immediately

(for example, if the resource is being used by another process), then the requesting process

must wait until it can acquire the resource.

 Use. The process can operate on the resource (for example, if the resource is a printer, the

process can print on the printer).

 Release. The process releases the resource.

The request and release of resources may be system calls,. Examples are the request() and

release() device, open() and close() file, and allocate() and free() memory system calls.

A set of processes is in a deadlocked state when every process in the set is waiting for an event

that can be caused only by another process in the set. The events with which we are mainly concerned

here are resource acquisition and release. The resources may be either physical resources (for example,

printers, tape drives, memory space, and CPU cycles) or logical resources (for example, semaphores,

mutex locks, and files). However, other types of events may result in deadlocks (for example, the IPC

facilities).

To illustrate a deadlocked state, consider a system with three CD RW drives. Suppose each of

three processes holds one of these CD RW drives. If each process now requests another drive, the three

processes will be in a deadlocked state. Each is waiting for the event “CD RW is released,” which can be

caused only by one of the other waiting processes. This example illustrates a deadlock involving the same

resource type.

Deadlocks may also involve different resource types. For example, consider a system with one

printer and one DVD drive. Suppose that process Pi is holding the DVD and process Pj is holding the

printer. If Pi requests the printer and Pj requests the DVD drive, a deadlock occurs.

Developers of multithreaded applications must remain aware of the possibility of deadlocks. The

locking tools presented in Chapter 5 are designed to avoid race conditions. However, in using these tools,

developers must pay careful attention to how locks are acquired and released. Otherwise, deadlock can

occur.

Deadlock Characterization

In a deadlock, processes never finish executing, and system resources are tied up, preventing

other jobs from starting. Before we discuss the various methods for dealing with the deadlock problem,

we look more closely at features that characterize deadlocks.

110

Necessary Conditions

A deadlock situation can arise if the following four conditions hold simultane-ously in a system:

 Mutual exclusion. At least one resource must be held in a nonsharable mode; that is, only one

process at a time can use the resource. If another process requests that resource, the requesting

process must be delayed until the resource has been released.

 Hold and wait. A process must be holding at least one resource and waiting to acquire

additional resources that are currently being held by other processes.

 No preemption. Resources cannot be preempted; that is, a resource can be released only

voluntarily by the process holding it, after that process has completed its task.

 Circular wait. A set {P0 , P1, ..., Pn} of waiting processes must exist such that P0 is waiting for

a resource held by P1 , P1 is waiting for a resource held by P2 , ..., Pn−1 is waiting for a resource

held by Pn, and Pn is waiting for a resource held by P0.

We emphasize that all four conditions must hold for a deadlock to occur. The circular-wait

condition implies the hold-and-wait condition, so the four conditions are not completely independent.

Resource-Allocation Graph

Deadlocks can be described more precisely in terms of a directed graph called a system resource-

allocation graph.

This graph consists of a set of vertices V and a set of edges E.

The set of vertices V is partitioned into two different types of nodes: P = {P1 , P2 , ..., Pn}, the set

consisting of all the active processes in the system, and R = {R1 , R2 , ..., Rm}, the set consisting of all

resource types in the system.

A directed edge from process Pi to resource type Rj is denoted by Pi → Rj ; it signifies that process

Pi has requested an instance of resource type Rj and is currently waiting for that resource. A directed edge

from resource type Rj to process Pi is denoted by Rj → Pi ; it signifies that an instance of resource type Rj

has been allocated to process Pi .

A directed edge Pi → R j is called a request edge; a directed edge Rj → Pi is called an assignment

edge.

Pictorially, we represent each process Pi as a circle and each resource type Rj as a rectangle. Since

resource type Rj may have more than one instance, we represent each such instance as a dot within the

111

rectangle. Note that a request edge points to only the rectangle Rj , whereas an assignment edge must also

designate one of the dots in the rectangle.

When process Pi requests an instance of resource type Rj , a request edge is inserted in the resource-

allocation graph. When this request can be fulfilled, the request edge is instantaneously transformed to

an assignment edge. When the process no longer needs access to the resource, it releases the resource. As

a result, the assignment edge is deleted.

The resource-allocation graph shown in Figure 7.1 depicts the following situation.

 The sets P, R, and E:

 P = {P1, P2, P3}

 R = {R1 , R2 , R3, R4 }

◦ E = {P1 → R1, P2 → R3 , R1 → P2 , R2 → P2 , R2 → P1, R3 → P3}

 Resource instances:

 One instance of resource type R1

 Two instances of resource type R2

 One instance of resource type R3

 Three instances of resource type R4

 Process states:

Process P1 is holding an instance of resource type R2 and is waiting for an instance of resource type R1.

Process P2 is holding an instance of R1 and an instance of R2 and is waiting for an instance of R3.

Process P3 is holding an instance of R3.

Given the definition of a resource-allocation graph, it can be shown that, if the graph contains no

cycles, then no process in the system is deadlocked. If the graph does contain a cycle, then a deadlock

may exist.

If each resource type has exactly one instance, then a cycle implies that a deadlock has occurred.

If the cycle involves only a set of resource types, each of which has only a single instance, then a

deadlock has occurred. Each process involved in the cycle is deadlocked. In this case, a cycle in the graph

is both a necessary and a sufficient condition for the existence of deadlock.

If each resource type has several instances, then a cycle does not necessarily imply that a deadlock

has occurred. In this case, a cycle in the graph is a necessary but not a sufficient condition for the

existence of deadlock.

112

To illustrate this concept, we return to the resource-allocation graph depicted in Figure 7.1.

Suppose that process P3 requests an instance of resource

type R2. Since no resource instance is currently available, we add a request edge P3 → R2 to the graph

(Figure 7.2). At this point, two minimal cycles exist in the system:

P1 → R1 → P2 → R3 → P3 → R2 → P1 P2 → R3 → P3 → R2 →P2

Processes P1 , P2, and P3 are deadlocked. Process P2 is waiting for the resource R3 , which is held by

process P3. Process P3 is waiting for either process P1 or process P2 to release resource R2 . In addition,

process P1 is waiting for process P2 to release resource R1 .

Now consider the resource-allocation graph in Figure 7.3. In this example, we also have a cycle:

P1 → R1 → P3 → R2 → P1

However, there is no deadlock. Observe that process P4 may release its instance of resource type

R2. That resource can then be allocated to P3 , breaking the cycle.

In summary, if a resource-allocation graph does not have a cycle, then the system is not in a

deadlocked state. If there is a cycle, then the system may or may not be in a deadlocked state. This

observation is important when we deal with the deadlock problem.

Methods for Handling Deadlocks

Generally speaking, we can deal with the deadlock problem in one of three ways:

 We can use a protocol to prevent or avoid deadlocks, ensuring that the system will never enter
a deadlocked state.

 We can allow the system to enter a deadlocked state, detect it, and recover.

 We can ignore the problem altogether and pretend that deadlocks never occur in the system.

113

The third solution is the one used by most operating systems, including Linux and Windows. It is

then up to the application developer to write programs that handle deadlocks.

To ensure that deadlocks never occur, the system can use either a deadlock-prevention or a

deadlock-avoidance scheme. Deadlock prevention provides a set of methods to ensure that at least one

of the necessary conditions cannot hold. These methods prevent deadlocks by constraining how requests

for resources can be made.

Deadlock avoidance requires that the operating system be given additional information in

advance concerning which resources a process will request and use during its lifetime. With this

additional knowledge, the operating system can decide for each request whether or not the process should

wait. To decide whether the current request can be satisfied or must be delayed, the system must consider

the resources currently available, the resources currently allocated to each process, and the future requests

and releases of each process.

Deadlock Prevention

For a deadlock to occur, each of the four necessary conditions must hold. By ensuring that at least

one of these conditions cannot hold, we can prevent the occurrence of a deadlock. We elaborate on this

approach by examining each of the four necessary conditions separately.

Mutual Exclusion

The mutual exclusion condition must hold. That is, at least one resource must be nonsharable.

Sharable resources, in contrast, do not require mutually exclusive access and thus cannot be involved in a

deadlock.

Read-only files are a good example of a sharable resource. If several processes attempt to open a

read-only file at the same time, they can be granted simultaneous access to the file.

A process never needs to wait for a sharable resource. In general, however, we cannot prevent

deadlocks by denying the mutual-exclusion condition, because some resources are intrinsically

nonsharable.

For example, a mutex lock cannot be simultaneously shared by several processes.

Hold and Wait

To ensure that the hold-and-wait condition never occurs in the system, we must guarantee that,

whenever a process requests a resource, it does not hold any other resources. One protocol that we can

use requires each process to request and be allocated all its resources before it begins execution. We can

114

implement this provision by requiring that system calls requesting resources for a process precede all

other system calls.

An alternative protocol allows a process to request resources only when it has none. A process

may request some resources and use them. Before it can request any additional resources, it must release

all the resources that it is currently allocated.

To illustrate the difference between these two protocols, we consider a process that copies data

from a DVD drive to a file on disk, sorts the file, and then prints the results to a printer. If all resources

must be requested at the beginning of the process, then the process must initially request the DVD drive,

disk file, and printer. It will hold the printer for its entire execution, even though it needs the printer only

at the end.

The second method allows the process to request initially only the DVD drive and disk file. It

copies from the DVD drive to the disk and then releases both the DVD drive and the disk file. The

process must then request the disk file and the printer. After copying the disk file to the printer, it

releases these two resources and terminates.

Both these protocols have two main disadvantages. First, resource utilization may be low, since

resources may be allocated but unused for a long period. In the example given, for instance, we can

release the DVD drive and disk file, and then request the disk file and printer, only if we can be sure that

our data will remain on the disk file. Otherwise, we must request all resources at the beginning for both

protocols.

Second, starvation is possible. A process that needs several popular resources may have to wait

indefinitely, because at least one of the resources that it needs is always allocated to some other process.

No Preemption

The third necessary condition for deadlocks is that there be no preemption of resources that have

already been allocated. To ensure that this condition does not hold, we can use the following protocol. If

a process is holding some resources and requests another resource that cannot be immediately allocated

to it (that is, the process must wait), then all resources the process is currently holding are preempted. In

other words, these resources are implicitly released. The preempted resources are added to the list of

resources for which the process is waiting. The process will be restarted only when it can regain its old

resources, as well as the new ones that it is requesting.

Circular Wait

115

The fourth and final condition for deadlocks is the circular-wait condition. One way to ensure that

this condition never holds is to impose a total ordering of all resource types and to require that each

process requests resources in an increasing order of enumeration.

To illustrate, we let R = { R1, R2, ..., Rm} be the set of resource types. We assign to each resource

type a unique integer number, which allows us to compare two resources and to determine whether one

precedes another in our ordering. Formally, we define a one-to-one function F: R → N, where N is the set

of natural numbers. For example, if the set of resource types R includes tape drives, disk drives, and

printers, then the function F might be defined as follows:

F (tape drive) = 1

F (disk drive) = 5

F (printer) = 12

We can now consider the following protocol to prevent deadlocks: Each process can request

resources only in an increasing order of enumeration. That is, a process can initially request any number

of instances of a resource type — say, Ri . After that, the process can request instances of resource type Rj

if and only if F(Rj) > F(Ri). For example, using the function defined previously, a process that wants to

use the tape drive and printer at the same time must first request the tape drive and then request the

printer. Alternatively, we can require that a process requesting an instance of resource type Rj must have

released any resources Ri such that F(Ri) ≥ F(Rj). Note also that if several instances of the same

resource type are needed, a single request for all of them must be issued.

Deadlock Avoidance

An alternative method for avoiding deadlocks is to require additional information about how

resources are to be requested.

The various algorithms that use this approach differ in the amount and type of information

required. The simplest and most useful model requires that each process declare the maximum number

of resources of each type that it may need. Given this a priori information, it is possible to construct an

algorithm that ensures that the system will never enter a deadlocked state. A deadlock-avoidance

algorithm dynamically examines the resource-allocation state to ensure that a circular-wait condition can

never exist. The resource-allocation state is defined by the number of available and allocated resources

and the maximum demands of the processes. In the following sections, we explore two deadlock-

avoidance algorithms.

116

Safe State

A state is safe if the system can allocate resources to

each process (up to its maximum) in some order and still

avoid a deadlock. More formally, a system is in a safe state

only if there exists a safe sequence.

A sequence of processes <P1, P2, ..., Pn> is a safe

sequence for the current allocation state if, for each Pi , the

resource requests that Pi can still make can be satisfied by

the currently available resources plus the resources held by

all Pj , with j < i.

In this situation, if the resources that Pi needs are not immediately available, then Pi can wait until

all Pj have finished. When they have finished, Pi can obtain all of its needed resources, complete its

designated task, return its allocated resources, and terminate. When Pi terminates, Pi+1 can obtain its

needed resources, and so on. If no such sequence exists, then the system state is said to be unsafe.

A safe state is not a deadlocked state. Conversely, a deadlocked state is an unsafe state. Not all

unsafe states are deadlocks, however (Figure 7.6). An unsafe state may lead to a deadlock. As long as the

state is safe, the operating system can avoid unsafe (and deadlocked) states. In an unsafe state, the

operating system cannot prevent processes from requesting resources in such a way that a deadlock

occurs. The behavior of the processes controls unsafe states.

To illustrate, we consider a system with twelve magnetic tape drives and three processes: P0, P1,

and P2 . Process P0 requires ten tape drives, process P1 may need as many as four tape drives, and process

P2 may need up to nine tape drives. Suppose that, at time t0 , process P0 is holding five tape drives,

process P1 is holding two tape drives, and process P2 is holding two tape drives. (Thus, there are three

free tape drives.)

 Maximum Needs Current Needs

P0 10 5

P1 4 2

P2 9 2

117

At time t0, the system is in a safe state. The sequence <P1 , P0 , P2> satisfies the safety condition.

Process P1 can immediately be allocated all its tape drives and then return them (the system will then

have five available tape drives); then process P0 can get all its tape drives and return them (the system

will then have ten available tape drives); and finally process P2 can get all its tape drives and return them

(the system will then have all twelve tape drives available).

Resource-Allocation-Graph Algorithm

If we have a resource-allocation system with

only one instance of each resource type, we can use a

variant of the resource-allocation graph for deadlock

avoidance.

In addition to the request and assignment edges

already described, we introduce a new type of edge,

called a claim edge.

A claim edge Pi → Rj indicates that process Pi may request resource Rj at some time in the future.

This edge resembles a request edge in direction but is represented in the graph by a dashed line. When

process Pi requests resource Rj , the claim edge Pi → Rj is converted to a request edge. Similarly, when a

resource Rj is released by Pi , the assignment edge Rj → Pi is reconverted to a claim edge Pi → Rj .

Note that the resources must be claimed a priori in the system. That is, before process Pi starts

executing, all its claim edges must already appear in the resource-allocation graph. We can relax this

condition by allowing a claim edge Pi → Rj to be added to the graph only if all the edges associated with

process Pi are claim edges.

Now suppose that process Pi requests resource Rj . The request can be granted only if converting

the request edge Pi → Rj to an assignment edge Rj → Pi does not result in the formation of a cycle in the

resource-allocation graph. We check for safety by using a

cycle-detection algorithm. An algorithm for detecting a

cycle in this graph requires an order of n
2
 operations, where

n is the number of processes in the system.

If no cycle exists, then the allocation of the resource

will leave the system in a safe state. If a cycle is found, then

the allocation will put the system in an unsafe state. In that

case, process Pi will have to wait for its requests to be

118

satisfied.

To illustrate this algorithm, we consider the resource- allocation graph of Figure 7.7. Suppose that

P2 requests R2. Although R2 is currently free, we cannot allocate it to P2, since this action will create a

cycle in the graph (Figure 7.8). A cycle, as mentioned, indicates that the system is in an unsafe state. If P1

requests R2, and P2 requests R1, then a deadlock will occur.

Banker’s Algorithm

The resource-allocation-graph algorithm is not applicable to a resource-allocation system with

multiple instances of each resource type. The deadlock-avoidance algorithm that we describe next is

applicable to such a system but is less efficient than the resource-allocation graph scheme. This algorithm

is commonly known as the banker’s algorithm. The name was chosen because the algorithm could be

used in a banking system to ensure that the bank never allocated its available cash in such a way that it

could no longer satisfy the needs of all its customers.

When a new process enters the system, it must declare the maximum number of instances of each

resource type that it may need. This number may not exceed the total number of resources in the system.

When a user requests a set of resources, the system must determine whether the allocation of these

resources will leave the system in a safe state. If it will, the resources are allocated; otherwise, the process

must wait until some other process releases enough resources.

Several data structures must be maintained to implement the banker ’s algorithm. These data

structures encode the state of the resource-allocation system. We need the following data structures,

where n is the number of processes in the system and m is the number of resource types:

 Available. A vector of length m indicates the number of available resources of each type. If

Available[j] equals k, then k instances of resource type Rj are available.

 Max. An n × m matrix defines the maximum demand of each process. If Max[i][j] equals k, then

process Pi may request at most k instances of resource type Rj .

 Allocation. An n × m matrix defines the number of resources of each type currently allocated to

each process. If Allocation[i][j] equals k, then process Pi is currently allocated k instances of

resource type Rj .

119

 Need. An n × m matrix indicates the remaining resource need of each process. If Need[i][j]

equals k, then process Pi may need k more instances of resource type Rj to complete its task.

Note that Need[i][j] equals Max[i][j] − Allocation[i][j].

These data structures vary over time in both size and value.

To simplify the presentation of the banker ’s algorithm, we next establish some notation. Let X and

Y be vectors of length n. We say that X ≤ Y if and only if X[i] ≤ Y[i] for all i = 1, 2, ..., n. For example, if

X = (1,7,3,2) and Y = (0,3,2,1), then Y ≤ X. In addition, Y < X if Y ≤ X and Y = X.

We can treat each row in the matrices Allocation and Need as vectors and refer to them as

Allocationi and Needi . The vector Allocationi specifies the resources currently allocated to process Pi ;

the vector Needi specifies the additional resources that process Pi may still request to complete its task.

Safety Algorithm

We can now present the algorithm for finding out whether or not a system is in a safe state. This

algorithm can be described as follows:

 Let Work and Finish be vectors of length m and n, respectively. Initialize Work = Available

and Finish[i] = false for i = 0, 1, ..., n − 1.

 Find an index i such that both

 Finish[i] == false
 Needi ≤ Work

If no such i exists, go to step 4.
 Work = Work + Allocationi Finish[i] = true

Go to step 2.

 If Finish[i] == true for all i, then the system is in a safe state.

This algorithm may require an order of m × n
2
 operations to determine whether a state is safe.

Resource-Request Algorithm

Next, we describe the algorithm for determining whether requests can be safely granted.

Let Requesti be the request vector for process Pi . If Requesti [j] == k, then process Pi wants

k instances of resource type Rj . When a request for resources is made by process Pi , the

following actions are taken:

 If Requesti ≤ Needi , go to step 2. Otherwise, raise an error condition, since the process has

exceeded its maximum claim.

 If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait, since the resources are not

available.

120

 Have the system pretend to have allocated the requested resources to process Pi by

modifying the state as follows:

Available = Available– Requesti ;

Allocationi = Allocationi + Requesti ;

Needi = Needi – Requesti ;

If the resulting resource-allocation state is safe, the transaction is com-pleted, and process Pi

is allocated its resources. However, if the new state is unsafe, then Pi must wait for Requesti ,

and the old resource-allocation state is restored.

An Illustrative Example

 Consider the following situation:

The system is in a safe state since the sequence <

P1, P3, P4, P2, P0> satisfies safety criteria

 And now consider what happens if process

P1 requests 1 instance of A and 2 instances of C. (

Request[1] = (1, 0, 2))

 What about requests of (3, 3,0) by P4? or (

0, 2, 0) by P0? Can these be safely granted? Why

or why not?

Deadlock Detection

If a system does not employ either a deadlock-prevention or a deadlock-avoidance algorithm, then

a deadlock situation may occur. In this environment, the system may provide:

 An algorithm that examines the state of the system to determine whether a deadlock has

occurred

 An algorithm to recover from the deadlock

121

In the following discussion, we elaborate on these two requirements as they pertain to systems

with only a single instance of each resource type, as well as to systems with several instances of each

resource type. At this point, however, we note that a detection-and-recovery scheme requires overhead

that includes not only the run-time costs of maintaining the necessary information and executing the

detection algorithm but also the potential losses inherent in recovering from a deadlock.

Single Instance of Each Resource Type

 If all resources have only a single instance, then we can define a deadlock-detection

algorithm that uses a variant of the resource-allocation graph, called a wait-for graph. We obtain this

graph from the resource-allocation graph by removing the resource nodes and collapsing the appropriate

edges.

More precisely, an

edge from Pi to Pj in a wait-

for graph implies that process

Pi is waiting for process Pj to

release a resource that Pi

needs. An edge Pi → Pj exists

in a wait-for graph if and only

if the corresponding resource-

allocation graph contains two

edges Pi → Rq and Rq → Pj for

some resource Rq . In Figure

7.9, we present a resource-allocation graph and the corresponding wait-for graph.

As before, a deadlock exists in the system if and only if the wait-for graph contains a cycle. To

detect deadlocks, the system needs to maintain the wait-for graph and periodically invoke an algorithm

that searches for a cycle in the graph. An algorithm to detect a cycle in a graph requires an order of n
2

operations, where n is the number of vertices in the graph.

Several Instances of a Resource Type

The wait-for graph scheme is not applicable to a resource-allocation system with multiple instances

of each resource type. We turn now to a deadlock-detection algorithm that is applicable to such a system.

The algorithm employs several time-varying data structures that are similar to those used in the banker ’s

algorithm:

 Available. A vector of length m indicates the number of available resources of each type.

122

 Allocation. An n × m matrix defines the number of resources of each type currently

allocated to each process.

 Request. An n × m matrix indicates the current request of each process. If Request[i][j]

equals k, then process Pi is requesting k more instances of resource type Rj .

The ≤ relation between two vectors is defined as in Section 7.5.3. To simplify notation, we again

treat the rows in the matrices Allocation and Request as vectors; we refer to them as Allocationi and

Requesti . The detection algorithm described here simply investigates every possible allocation sequence

for the processes that remain to be completed. Compare this algorithm with the banker ’s algorithm.

 Let Work and Finish be vectors of length m and n, respectively. Initialize Work = Available.

For i = 0, 1, ..., n – 1, if Allocationi = 0, then Finish[i] = false. Otherwise, Finish[i] = true.

 Find an index i such that both

 Finish[i] == false

 Requesti ≤ Work

If no such i exists, go to step 4.

 Work = Work + Allocationi Finish[i] = true

Go to step 2.

 If Finish[i] == false for some i, 0 ≤ i < n, then the system is in a deadlocked state. Moreover, if

Finish[i] == false, then process Pi is deadlocked.

This algorithm requires an order of m × n
2
 operations to detect whether the system is in a

deadlocked state.

You may wonder why we reclaim the resources of process Pi (in step 3) as soon as we determine that

Requesti ≤ Work (in step 2b). We know that Pi is currently not involved in a deadlock (since Requesti ≤

Work). Thus, we take an optimistic attitude and assume that Pi will require no more resources to

complete its task; it will thus soon return all currently allocated resources to the system. If our

assumption is incorrect, a deadlock may occur later. That deadlock will be detected the next time the

deadlock-detection algorithm is invoked.

123

To illustrate this algorithm, we consider a system with five

processes P0 through P4 and three resource types A, B, and C.

Resource type A has seven instances, resource type B has two

instances, and resource type C has sixinstances. Suppose that, at

time T0, we have the following resource-allocation state:

We claim that the system is not in a deadlocked state. Indeed,

if we execute our algorithm, we will find that the sequence <P0 ,

P2, P3 , P1, P4> results in Finish[i] == true for all i.

Suppose now that process P2 makes one additional request for an instance of type C.

The Request matrix is modified as follows:

We claim that the system is now deadlocked. Although we can reclaim the

resources held by process P0 , the number of available resources is not sufficient to fulfill the

requests of the other processes. Thus, a deadlock exists, consisting of processes P1, P2, P3 , and P4

.

Detection-Algorithm Usage

When should we invoke the detection algorithm? The answer depends on two factors:

 How often is a deadlock likely to occur?

 How many processes will be affected by deadlock when it happens?

If deadlocks occur frequently, then the detection algorithm should be invoked frequently. Resources

allocated to deadlocked processes will be idle until the deadlock can be broken. In addition, the number

of processes involved in the deadlock cycle may grow.

Deadlocks occur only when some process makes a request that cannot be granted immediately. This

request may be the final request that completes a chain of waiting processes. In the extreme, then, we can

invoke the deadlock-detection algorithm every time a request for allocation cannot be granted

immediately. In this case, we can identify not only the deadlocked set of processes but also the specific

process that “caused” the deadlock. (In reality, each of the deadlocked processes is a link in the cycle in

the resource graph, so all of them, jointly, caused the deadlock.) If there are many different resource

 Allocation Request Available

 A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

 Request

 A B C

P0 0 0 0

P1 2 0 2

P2 0 0 1

P3 1 0 0

P4 0 0 2

124

types, one request may create many cycles in the resource graph, each cycle completed by the most

recent request and “caused” by the one identifiable process.

Recovery from Deadlock

When a detection algorithm determines that a deadlock exists, several alter-natives are available.

One possibility is to inform the operator that a deadlock has occurred and to let the operator deal with the

deadlock manually. Another possibility is to let the system recover from the deadlock automatically.

There are two options for breaking a deadlock.

One is simply to abort one or more processes to break the circular wait.

The other is to preempt some resources from one or more of the deadlocked processes.

Process Termination

To eliminate deadlocks by aborting a process, we use one of two methods. In both methods, the

system reclaims all resources allocated to the terminated processes.

 Abort all deadlocked processes.

This method clearly will break the deadlock cycle, but at great expense. The deadlocked

processes may have computed for a long time, and the results of these partial computations

must be discarded and probably will have to be recomputed later.

 Abort one process at a time until the deadlock cycle is eliminated.

This method incurs considerable overhead, since after each process is aborted, a deadlock-

detection algorithm must be invoked to determine whether any processes are still deadlocked.

Aborting a process may not be easy. If the process was in the midst of updating a file, terminating

it will leave that file in an incorrect state. Similarly, if the process was in the midst of printing data on a

printer, the system must reset the printer to a correct state before printing the next job.

If the partial termination method is used, then we must determine which deadlocked process (or

processes) should be terminated. This determination is a policy decision, similar to CPU-scheduling

decisions. The question is basically an economic one; we should abort those processes whose termination

will incur the minimum cost.

Unfortunately, the term minimum cost is not a precise one. Many factors may affect which

process is chosen, including:

 What the priority of the process is

 How long the process has computed and how much longer the process will compute before

completing its designated task

125

 How many and what types of resources the process has used (for example, whether the

resources are simple to preempt)

 How many more resources the process needs in order to complete

 How many processes will need to be terminated

 Whether the process is interactive or batch

Resource Preemption

To eliminate deadlocks using resource preemption, we successively preempt some resources from

processes and give these resources to other processes until the deadlock cycle is broken.

If preemption is required to deal with deadlocks, then three issues need to be addressed:

 Selecting a victim. Which resources and which processes are to be preempted? As in

process termination, we must determine the order of preemption to minimize cost. Cost

factors may include such parameters as the number of resources a deadlocked process is

holding and the amount of time the process has thus far consumed.

 Rollback. If we preempt a resource from a process, what should be done with that process?

Clearly, it cannot continue with its normal execution; it is missing some needed resource.

We must roll back the process to some safe state and restart it from that state.

 Starvation. How do we ensure that starvation will not occur? That is, how can we guarantee

that resources will not always be preempted from the same process?

In a system where victim selection is based primarily on cost factors, it may happen that the same

process is always picked as a victim. As a result, this process never completes its designated task, a

starvation situation any practical system must address. Clearly, we must ensure that a process can be

picked as a victim only a (small) finite number of times. The most common solution is to include the

number of rollbacks in the cost factor.

126

Memory Management

Background

 Obviously memory accesses and memory management are a very important part of modern computer

operation. Every instruction has to be fetched from memory before it can be executed, and most

instructions involve retrieving data from memory or storing data in memory or both.

 The advent of multi-tasking Operating Systems compounds the complexity of memory management,

because as processes are swapped in and out of the CPU, so must their code and data be swapped in and

out of memory, all at high speeds and without interfering with any other processes.

 Shared memory, virtual memory, the classification of memory as read-only versus read-write, and

concepts like copy-on-write forking all further complicate the issue.

Basic Hardware

 It should be noted that from the memory chips point of view, all memory accesses are equivalent.

The memory hardware doesn't know what a particular part of memory is being used for, nor does it

care. This is almost true of the OS as well, although not entirely.

 The CPU can only access its registers and main memory. It cannot, for example, make direct

access to the hard drive, so any data stored there must first be transferred into the main memory

chips before the CPU can work with it. (Device drivers communicate with their hardware via

interrupts and "memory" accesses, sending short instructions for example to transfer data from the

hard drive to a specified location in main memory. The disk controller monitors the bus for such

instructions, transfers the data, and then notifies the CPU that the data is there with another

interrupt, but the CPU never gets direct access to the disk.)

 Memory accesses to registers are very fast, generally one clock tick, and a CPU may be able to

execute more than one machine instruction per clock tick.

 Memory accesses to main memory are comparatively slow, and may take a number of clock ticks

to complete. This would require intolerable waiting by the CPU if it were not for an intermediary

fast memory cache built into most modern CPUs. The basic idea of the cache is to transfer chunks

of memory at a time from the main memory to the cache, and then to access individual memory

locations one at a time from the cache.

 User processes must be restricted so that they only access memory locations that "belong" to that

particular process. This is usually implemented using a base register and a limit register for each

process, as shown in Figures 8.1 and 8.2 below.

 Every memory access made by a user process is checked against these two registers, and if a

memory access is attempted outside the valid range, then a fatal error is generated. The OS

obviously has access to all existing memory locations, as this is necessary to swap users' code and

127

data in and out of memory. It should also be obvious that changing the contents of the base and

limit registers is a privileged activity, allowed only to the OS kernel.

Figure 8.1 - A base and a limit register define a logical addresss space

Figure 8.2 - Hardware address protection with base and limit

registers

Address Binding:

 User programs typically refer to memory addresses with

symbolic names such as "i", "count", and "average Temperature". These

symbolic names must be mapped or bound to physical memory addresses,

which typically occurs in several stages:

o Compile Time - If it is known at compile time

where a program will reside in physical memory, then absolute code can be

generated by the compiler, containing actual physical addresses. However if

the load address changes at some later time, then the program will have to be

recompiled. DOS .COM programs use compile time binding.

o Load Time - If the location at which a program will

be loaded is not known at compile time, then the compiler must generate

relocatable code, which references addresses relative to the start of the

program. If that starting address changes, then the program must be reloaded

but not recompiled.

o Execution Time - If a program can be moved

around in memory during the course of its execution, then binding must be

delayed until execution time. This requires special hardware, and is the method

implemented by most modern Operating Systems.

 Figure 8.3 shows the various stages of the binding processes and the units involved in each stage:

Figure 8.3 - Multistep processing of a user program

128

Logical Versus Physical Address Space:

 The address generated by the CPU is a logical address, whereas the address actually seen by the

memory hardware is a physical address.

 Addresses bound at compile time or load time have identical logical and physical addresses.

 Addresses created at execution time, however, have different logical and physical addresses.

o In this case the logical address is also known as a virtual address, and the two terms are

used interchangeably by our text.

o The set of all logical addresses used by a program composes the logical address space,

and the set of all corresponding physical addresses composes the physical address space.

 The run time mapping of logical to physical addresses is handled by the memory-management

unit, MMU.

o The MMU can take on many forms. One of the simplest is a modification of the base-

register scheme described earlier.

o The base register is now termed a

relocation register, whose value is added to every memory

request at the hardware level.

 Note that user programs never see physical

addresses. User programs work entirely in logical address

space, and any memory references or manipulations are done

using purely logical addresses. Only when the address gets sent

to the physical memory chips is the physical memory address

generated.

Figure 8.4 - Dynamic relocation using a relocation register

Dynamic Loading:

 Rather than loading an entire program into memory at once, dynamic loading loads up each

routine as it is called. The advantage is that unused routines need never be loaded; reducing total

memory usage and generating faster program startup times. The downside is the added complexity

and overhead of checking to see if a routine is loaded every time it is called and then loading it up

if it is not already loaded.

Dynamic Linking and Shared Libraries

 With static linking library modules get fully included in executable modules, wasting both disk

space and main memory usage, because every program that included a certain routine from the

library would have to have their own copy of that routine linked into their executable code.

129

 With dynamic linking, however, only a stub is linked into the executable module, containing

references to the actual library module linked in at run time.

o This method saves disk space, because the library routines do not need to be fully included

in the executable modules, only the stubs.

o We will also learn that if the code section of the library routines is reentrant, (meaning it

does not modify the code while it runs, making it safe to re-enter it), then main memory

can be saved by loading only one copy of dynamically linked routines into memory and

sharing the code amongst all processes that are concurrently using it. (Each process would

have their own copy of the data section of the routines, but that may be small relative to

the code segments.) Obviously the OS must manage shared routines in memory.

o An added benefit of dynamically linked libraries (DLLs also known as shared libraries or

shared objects on UNIX systems) involves easy upgrades and updates. When a program

uses a routine from a standard library and the routine changes, then the program must be

re-built (re-linked) in order to incorporate the changes. However if DLLs are used, then

as long as the stub doesn't change, the program can be updated merely by loading new

versions of the DLLs onto the system. Version information is maintained in both the

program and the DLLs, so that a program can specify a particular version of the DLL if

necessary.

o In practice, the first time a program calls a DLL routine, the stub will recognize the fact

and will replace itself with the actual routine from the DLL library. Further calls to the

same routine will access the routine directly and not incur the overhead of the stub access.

(Following the UML Proxy Pattern.)

Swapping:

 A process must be loaded into memory in order to execute.

 If there is not enough memory available to keep all running processes in memory at the same time, then

some processes who are not currently using the CPU may have their memory swapped out to a fast local

disk called the backing store.

Standard Swapping

 If compile-time or load-time address binding is used, then processes must be swapped back into

the same memory location from which they were swapped out. If execution time binding is used,

then the processes can be swapped back into any available location.

 Swapping is a very slow process compared to other operations.

 For example, if a user process occupied 10 MB and the transfer rate for the

backing store were 40 MB per second, then it would take 1/4 second (250

milliseconds) just to do the data transfer. Adding in a latency lag of 8

130

milliseconds and ignoring head seek time for the moment, and further recognizing

that swapping involves moving old data out as well as new data in, the overall

transfer time required for this swap is 512 milliseconds, or over half a second. For

efficient processor scheduling the CPU time slice should be significantly longer

than this lost transfer time.

 To reduce swapping transfer overhead, it is desired to transfer as little information as possible,

which requires that the system know how much memory a process is using, as opposed to how

much it might use. Programmers can help with this by freeing up dynamic memory that they are

no longer using.

 It is important to swap processes out of memory only when they are idle, or more to the point, only

when there are no pending I/O operations. (Otherwise the pending I/O operation could write into

the wrong process's memory space.) The solution is to either swap only totally idle processes, or

do I/O operations only into and out of OS buffers, which are then transferred to or from process's

main memory as a second step.

 Most modern Operating Systems no longer use swapping, because it is too slow and there are

faster alternatives available. (e.g. Paging.)

However some UNIX systems will still invoke

swapping if the system gets extremely full, and

then discontinue swapping when the load

reduces again. Windows 3.1 would use a

modified version of swapping that was

somewhat controlled by the user, swapping

process's out if necessary and then only

swapping them back in when the user focused

on that particular window.

Figure 8.5 - Swapping of two processes using a disk as a backing store

Swapping on Mobile Systems (New Section in 9th Edition)

 Swapping is typically not supported on mobile platforms, for several reasons:

o Mobile devices typically use flash memory in place of more spacious hard drives for

persistent storage, so there is not as much space available.

o Flash memory can only be written to a limited number of times before it becomes

unreliable.

o The bandwidth to flash memory is also lower.

 Apple's IOS asks applications to voluntarily free up memory

o Read-only data, e.g. code, is simply removed, and reloaded later if needed.

o Modified data, e.g. the stack, is never removed, but . . .

131

o Apps that fail to free up sufficient memory can be removed by the OS

 Android follows a similar strategy.

o Prior to terminating a process, Android writes its application state to flash memory for

quick restarting.

Contiguous Memory Allocation

 One approach to memory management is to load each process into a contiguous space. The operating

system is allocated space first, usually at either low or high memory locations, and then the remaining

available memory is allocated to processes as needed. (The OS is usually loaded low, because that is

where the interrupt vectors are located, but on older systems part of the OS was loaded high to make more

room in low memory (within the 640K barrier) for user processes.)

Memory Protection (was Memory Mapping and Protection)

 The system shown in Figure 8.6

below allows protection against user programs

accessing areas that they should not, allows

programs to be relocated to different memory

starting addresses as needed, and allows the

memory space devoted to the OS to grow or

shrink dynamically as needs change.

Figure 8.6 - Hardware support for relocation and limit registers

Memory Allocation

 One method of allocating contiguous memory is to divide all available memory into equal sized

partitions, and to assign each process to their own partition. This restricts both the number of

simultaneous processes and the maximum size of each process, and is no longer used.

 An alternate approach is to keep a list of unused (free) memory blocks (holes), and to find a hole

of a suitable size whenever a process needs to be loaded into memory. There are many different

strategies for finding the "best" allocation of memory to processes, including the three most

commonly discussed:

1. First fit - Search the list of holes until one is found that is big enough to satisfy the

request, and assign a portion of that hole to that process. Whatever fraction of the hole not

needed by the request is left on the free list as a smaller hole. Subsequent requests may

start looking either from the beginning of the list or from the point at which this search

ended.

132

2. Best fit - Allocate the smallest hole that is big enough to satisfy the request. This saves

large holes for other process requests that may need them later, but the resulting unused

portions of holes may be too small to be of any use, and will therefore be wasted. Keeping

the free list sorted can speed up the process of finding the right hole.

3. Worst fit - Allocate the largest hole available, thereby increasing the likelihood that the

remaining portion will be usable for satisfying future requests.

 Simulations show that either first or best fit are better than worst fit in terms of both time and

storage utilization. First and best fits are about equal in terms of storage utilization, but first fit is

faster.

Fragmentation:

 All the memory allocation strategies suffer from external fragmentation, though first and best fits

experience the problems more so than worst fit. External fragmentation means that the available

memory is broken up into lots of little pieces, none of which is big enough to satisfy the next

memory requirement, although the sum total could.

 The amount of memory lost to fragmentation may vary with algorithm, usage patterns, and some

design decisions such as which end of a hole to allocate and which end to save on the free list.

 Statistical analysis of first fit, for example, shows that for N blocks of allocated memory, another

0.5 N will be lost to fragmentation.

 Internal fragmentation also occurs, with all memory allocation strategies. This is caused by the

fact that memory is allocated in blocks of a fixed size, whereas the actual memory needed will

rarely be that exact size. For a random distribution of memory requests, on the average 1/2 block

will be wasted per memory request, because on the average the last allocated block will be only

half full.

o Note that the same effect happens with hard drives, and that modern hardware gives us

increasingly larger drives and memory at the expense of ever larger block sizes, which

translates to more memory lost to internal fragmentation.

o Some systems use variable size blocks to minimize losses due to internal fragmentation.

 If the programs in memory are relocatable, (using execution-time address binding), then the

external fragmentation problem can be reduced via compaction, i.e. moving all processes down to

one end of physical memory. This only involves updating the relocation register

for each process, as all internal work is done using logical addresses.

 Another solution as we will see in upcoming sections is to allow

processes to use non-contiguous blocks of physical memory, with a separate

relocation register for each block.

Segmentation

133

Basic Method:

 Most users (programmers) do not think of their programs as existing in one continuous linear

address space.

 Rather they tend to think of their memory in multiple segments, each dedicated to a particular use,

such as code, data, the stack, the heap, etc.

 Memory segmentation supports this view by providing addresses with a segment number (mapped

to a segment base address) and an offset from the beginning of that segment.

 For example, a C compiler might generate 5 segments for the user code, library code, global

(static) variables, the stack, and the heap, as shown in Figure 8.7: Programmer's view of a

program.

Segmentation is a memory-management scheme that supports this programmer view of memory. A

logical address space is a collection of segments.

Each segment has a name and a length. The addresses specify both the segment name and the offset

within the segment. The programmer therefore specifies each address by two quantities: a segment name

and an offset.

For simplicity of implementation, segments are numbered and are referred to by a segment number,

rather than by a segment name. Thus, a logical address consists of a two tuple:

<segment-number, offset>.

Normally, when a program is compiled, the compiler automatically constructs segments reflecting

the input program.

A C compiler might create separate segments for the following:

 The code

 Global variables

 The heap, from which memory is allocated

 The stacks used by each thread

 The standard C library

Libraries that are linked in during compile time might be assigned separate segments. The loader

would take all these segments and assign them segment numbers.

Segmentation Hardware

Although the programmer can now refer to objects in the program by a two-dimensional

address, the actual physical memory is still, of course, a one-dimensional sequence of bytes. Thus,

we must define an implementation to map two-dimensional user-defined addresses into one-

dimensional physical addresses. This mapping is effected by a segment table. Each entry in the

segment table has a segment base and a segment limit. The segment base contains the starting

134

physical address where the segment resides in memory, and the segment limit specifies the length

of the segment.

The use of a segment table is illustrated in Figure 8.8. A logical address consists of two parts: a

segment number, s, and an offset into that segment, d. The segment number is used as an index to the

segment table. The offset d of the logical address must be between 0 and the segment limit. If it is not, we

trap to the operating system (logical addressing attempt beyond end of segment). When an offset is legal,

it is added to the segment base to produce the address in physical memory of the desired byte. The

segment table is thus essentially an array of base – limit register pairs.

Figure 8.8 - Segmentation hardware Figure 8.9 - Example of segmentation

As an example, consider the situation shown in Figure 8.9. We have five segments numbered

from 0 through 4. The segments are stored in physical memory as shown. The segment table has a

separate entry for each segment, giving the beginning address of the segment in physical memory (or

base) and the length of that segment (or limit). For example, segment 2 is 400 bytes long and begins at

location 4300. Thus, a reference to byte 53 of segment 2 is mapped onto location 4300 + 53 = 4353. A

reference to segment 3, byte 852, is mapped to 3200 (the base of segment 3) + 852 = 4052. A reference to

byte 1222 of segment 0 would result in a trap to the operating system, as this segment is only 1,000 bytes

long.

Paging:

135

 Paging is a memory management scheme that allows processes physical memory to be discontinuous, and

which eliminates problems with fragmentation by allocating memory in equal sized blocks known as

pages.

 Paging eliminates most of the problems of the other methods discussed previously, and is the predominant

memory management technique used today.

Basic Method

 The basic idea behind paging is to divide physical memory into a number of equal sized blocks called

frames, and to divide programs logical memory space into blocks of the same size called pages.

 Any page (from any process) can be placed into any available frame.

 The page table is used to look up what frame a particular page is stored in at the moment. In the following

example, for instance, page 2 of the program's logical memory is currently stored in frame 3 of physical

memory:

Figure 8.10 - Paging hardware

Figure 8.11 - Paging model of logical and physical memory

 A logical address consists of two parts: A page

number in which the address resides, and an offset from

the beginning of that page. (The number of bits in the

page number limits how many pages a single process

can address. The number of bits in the offset

determines the maximum size of each page, and should

correspond to the system frame size.)

 The page table maps the page number to a

frame number, to yield a physical address which also

has two parts: The frame number and the offset within

that frame. The number of bits in the frame number

determines how many frames the system can address,

and the number of bits in the offset determines the size of each frame.

136

 Page numbers, frame numbers, and frame sizes are determined by the architecture, but are typically powers

of two, allowing addresses to be split at a certain number of bits. For example, if the logical address size is

2^m and the page size is 2^n, then the high-order m-n bits of a logical address designate the page number

and the remaining n bits represent the offset.

 Note also that the number of bits in the page number and the number of bits in the frame number do not

have to be identical. The former determines the address range of the logical address space, and the latter

relates to the physical address space.

 (DOS used to use an addressing scheme with 16 bit frame numbers and 16-bit offsets, on hardware that

only supported 24-bit hardware addresses. The result was a resolution of starting frame addresses finer

than the size of a single frame, and multiple frame-offset combinations that mapped to the same physical

hardware address.)

 Consider the following micro example, in which a process has 16 bytes of logical memory, mapped in 4

byte pages into 32 bytes of physical memory. (Presumably some other processes would be consuming the

remaining 16 bytes of physical memory.)

Figure 8.12 - Paging example for a 32-byte memory with 4-

byte pages

 Note that paging is like having a table of relocation

registers, one for each page of the logical memory.

 There is no external fragmentation with paging. All

blocks of physical memory are used, and there are no gaps in

between and no problems with finding the right sized hole for

a particular chunk of memory.

 There is, however, internal fragmentation. Memory is

allocated in chunks the size of a page, and on the average, the

last page will only be half full, wasting on the average half a

page of memory per process. (Possibly more, if processes

keep their code and data in separate pages.)

 Larger page sizes waste more memory, but are more efficient in terms of overhead. Modern trends have

been to increase page sizes, and some systems even have multiple size pages to try and make the best of

both worlds.

137

 Page table entries (frame numbers) are typically 32 bit numbers, allowing access to 2^32 physical page

frames. If those frames are 4 KB in size each, that translates to 16 TB of addressable physical memory. (

32 + 12 = 44 bits of physical address space.)

Figure 8.13 - Free frames (a) before

allocation and (b) after allocation

 When a process requests memory

(e.g. when its code is loaded in from disk),

free frames are allocated from a free-frame

list, and inserted into that process's page

table.

 Processes are blocked from

accessing anyone else's memory because all

of their memory requests are mapped through their page table. There is no way for them to generate an

address that maps into any other process's memory space.

 The operating system must keep track of each individual process's page table, updating it whenever the

process's pages get moved in and out of memory, and applying the correct page table when processing

system calls for a particular process. This all increases the overhead involved when swapping processes in

and out of the CPU. (The currently active page table must be updated to reflect the process that is

currently running.)

Hardware Support

 Page lookups must be done for every memory reference, and whenever a process gets swapped in

or out of the CPU, its page table must be swapped in and out too, along with the instruction

registers, etc. It is therefore appropriate to provide hardware support for this operation, in order to

make it as fast as possible and to make process switches as fast as possible also.

 One option is to use a set of registers for the page table. For example, the DEC PDP-11 uses 16-bit

addressing and 8 KB pages, resulting in only 8 pages per process. (It takes 13 bits to address 8 KB

of offset, leaving only 3 bits to define a page number.)

 An alternate option is to store the page table in main memory, and to use a single register (called

the page-table base register, PTBR) to record where in memory the page table is located.

o Process switching is fast, because only the single register needs to be changed.

o However memory access just got half as fast, because every memory access now requires

two memory accesses - One to fetch the frame number from memory and then another one

to access the desired memory location.

o The solution to this problem is to use a very special high-speed memory device called the

translation look-aside buffer, TLB.

138

 The benefit of the TLB is that it can search

an entire table for a key value in parallel, and if it is found

anywhere in the table, then the corresponding lookup

value is returned.

Figure 8.14 - Paging hardware with TLB

 The TLB is very expensive, however, and therefore very small. (Not large enough to hold the entire

page table.) It is therefore used as a cache device.

 Addresses are first checked against the TLB, and if the info is not there (a TLB miss), then the frame is

looked up from main memory and the TLB is updated.

 If the TLB is full, then replacement strategies range from least-recently used, LRU to random.

 Some TLBs allow some entries to be wired down, which means that they cannot be removed from the

TLB. Typically these would be kernel frames.

 Some TLBs store address-space identifiers, ASIDs, to keep track of which process "owns" a particular

entry in the TLB. This allows entries from multiple processes to be stored simultaneously in the TLB

without granting one process access to some other process's memory location. Without this feature the

TLB has to be flushed clean with every process switch.

 The percentage of time that the desired information is found in the TLB is termed the hit ratio.

Protection

 The page table can also help to protect processes from accessing memory that they shouldn't, or

their own memory in ways that they shouldn't.

 A bit or bits can be added to the page table to classify a page as read-write, read-only, read-write-

execute, or some combination of these sorts of things. Then each memory reference can be

checked to ensure it is accessing the memory in the appropriate mode.

 Valid / invalid bits can be added to "mask off" entries in the page table that are not in use by the

current process, as shown by example in Figure 8.12 below.

 Note that the valid / invalid bits described above cannot block all illegal memory accesses, due to

the internal fragmentation. (Areas of memory in the last page that are not entirely filled by the

process, and may contain data left over by whoever used that frame last.)

 Many processes do not use all of the page table available to them, particularly in modern systems

with very large potential page tables. Rather than waste memory by creating a full-size page table

for every process, some systems use a page-table length register, PTLR, to specify the length of

the page table.

139

Structure of the Page Table

1. Hierarchical Paging

 Most modern computer systems support logical address spaces of 2^32 to 2^64.

 With a 2^32 address space and 4K (2^12) page sizes, this leave 2^20 entries in the page table. At

4 bytes per entry, this amount to a 4 MB page table, which is too large to reasonably keep in

contiguous memory. (And to swap in and out of memory with each process switch.) Note that

with 4K pages, this would take 1024 pages just to hold the page table!

 One option is to use a two-tier paging system, i.e. to page the page table.

 For example, the 20 bits described above could be broken down into two 10-bit page numbers. The

first identifies an entry in the outer page table, which identifies where in memory to find one page

of an inner page table. The second 10 bits finds a specific entry in that inner page table, which in

turn identifies a particular frame in physical memory. (The remaining 12 bits of the 32 bit logical

address are the offset within the 4K frame.)

Figure 8.17 A two-level page-table scheme

Figure 8.18 - Address translation for a two-level 32-bit

paging architecture

 VAX Architecture divides 32-bit addresses into 4 equal sized sections, and each page is 512 bytes,

yielding an address form of:

With a 64-bit logical address space and 4K pages, there are 52 bits worth of page numbers, which is still too many

even for two-level paging. One could increase the paging level, but with 10-bit page tables it would take 7 levels of

indirection, which would be prohibitively slow memory access. So some other approach must be used.

140

64-bits Two-tiered leaves 42 bits in outer table

Going to a fourth level still leaves 32 bits in the outer table.

2. Hashed Page Tables

 One common data structure for accessing data that is sparsely distributed over a broad range of

possible values is with hash tables. Figure 8.16 below illustrates a hashed page table using chain-

and-bucket hashing:

Figure 8.19 - Hashed page table

3. Inverted Page Tables

 Another approach is to use an inverted page table. Instead of a table listing all of the pages for a

particular process, an inverted page table lists all of the pages currently loaded in memory, for all

processes. (I.e. there is one entry per frame instead of one entry per page.)

141

 Access to an inverted page table can be slow, as it may be necessary to search the entire table in

order to find the desired page (or to

discover that it is not there.) Hashing

the table can help speedup the search

process.

 Inverted page tables

prohibit the normal method of

implementing shared memory, which is

to map multiple logical pages to a

common physical frame. (Because each

frame is now mapped to one and only

one process.)

Figure 8.20 - Inverted page table

142

Virtual Memory

Background

 Preceding sections talked about how to avoid memory fragmentation by breaking process memory

requirements down into smaller bites (pages), and storing the pages non-contiguously in memory.

However the entire process still had to be stored in memory somewhere.

 In practice, most real processes do not need all their pages, or at least not all at once, for several reasons:

1. Error handling code is not needed unless that specific error occurs, some of which are quite rare.

2. Arrays are often over-sized for worst-case scenarios, and only a small fraction of the arrays are

actually used in practice.

3. Certain features of certain programs are rarely used, such as the routine to balance the federal

budget. :-

 The ability to load only the portions of processes that were actually needed (and only when they were

needed) has several benefits:

o Programs could be written for a much larger address space (virtual memory space) than

physically exists on the computer.

o Because each process is only using a fraction of their total address space, there is more memory

left for other programs, improving CPU utilization and system throughput.

o Less I/O is needed for swapping processes in and out of RAM, speeding things up.

Figure 9.1 - Diagram showing virtual memory that is larger than physical memory

 Figure 9.2 shows virtual address space,

which is the programmers logical view of

process memory storage. The actual physical

layout is controlled by the process's page table.

 Note that the address space shown in

Figure 9.2 is sparse - A great hole in the middle

of the address space is

never used, unless the stack

and/or the heap grow to fill

the hole.

Figure 9.2 - Virtual address space

 Virtual memory also allows the sharing of files and memory by multiple processes,

with several benefits:

143

o System libraries can be shared by mapping them into the virtual address space of more than one

process.

o Processes can also share virtual

memory by mapping the same block of memory

to more than one process.

o Process pages can be shared

during a fork() system call, eliminating the need

to copy all of the pages of the original (parent)

process.

Figure 9.3 - Shared library using virtual

memory

Demand Paging:

 The basic idea behind demand paging is that

when a process is swapped in, its pages are not swapped in

all at once. Rather they are swapped in only when the

process needs them. (on demand.) This is termed a lazy

swapper, although a pager is a more accurate term.

Figure 9.4 - Transfer of a paged memory to contiguous

disk space

Basic Concepts:

 The basic idea behind paging is that

when a process is swapped in, the pager only loads

into memory those pages that it expects the process to

need (right away.)

 Pages that are not loaded into

memory are marked as invalid in the page table, using

the invalid bit. (The rest of the page table entry may

either be blank or contain information about where to

find the swapped-out page on the hard drive.)

 If the process only ever accesses

pages that are loaded in memory (memory resident

144

pages), then the process runs exactly as if all the pages were loaded in to memory.

Figure 9.5 - Page table when some pages are not in main memory.

 On the other hand, if a page is needed that was not originally loaded up, then a page fault trap is

generated, which must be handled in a series of steps:

1. The memory address requested is first checked, to make sure it was a valid memory

request.

2. If the reference was invalid, the process is terminated. Otherwise, the page must be paged

in.

3. A free frame is located, possibly from a free-frame list.

4. A disk operation is scheduled to bring in the necessary page from disk. (This will usually

block the process on an I/O wait, allowing some other process to use the CPU in the

meantime.)

5. When the I/O operation is complete, the process's page table is updated with the new

frame number, and the invalid bit is changed to indicate that this is now a valid page

reference.

6. The instruction that caused the page fault must now be restarted from the beginning, (as

soon as this process gets another turn on the CPU.)

Figure 9.6 - Steps in handling a page fault

 In an extreme case, NO pages are

swapped in for a process until they are requested

by page faults. This is known as pure demand

paging.

 In theory each instruction could

generate multiple page faults. In practice this is

very rare, due to locality of reference.

 The hardware necessary to

support virtual memory is the same as for paging

and swapping: A page table and secondary memory. (Swap space, whose allocation is discussed in

chapter 12.)

 A crucial part of the process is that the instruction must be restarted from scratch once the desired

page has been made available in memory. For most simple instructions this is not a major

difficulty. However there are some architectures that allow a single instruction to modify a fairly

large block of data, (which may span a page boundary), and if some of the data gets modified

before the page fault occurs, this could cause problems. One solution is to access both ends of the

145

block before executing the instruction, guaranteeing that the necessary pages get paged in before

the instruction begins.

Performance of Demand Paging

 Obviously there is some slowdown and performance hit whenever a page fault occurs and the

system has to go get it from memory, but just how big a hit is it exactly?

 There are many steps that occur when servicing a page fault (see book for full details), and some

of the steps are optional or variable. But just for the sake of discussion, suppose that a normal

memory access requires 200 nanoseconds, and that servicing a page fault takes 8 milliseconds.

(8,000,000 nanoseconds, or 40,000 times a normal memory access.) With a page fault rate of p,

(on a scale from 0 to 1), the effective access time is now:

(1 - p) * (200) + p * 8000000 = 200 + 7,999,800 * p

Which clearly depends heavily on p! Even if only one access in 1000 causes a page fault, the effective access time

drops from 200 nanoseconds to 8.2 microseconds, a slowdown of a factor of 40 times. In order to keep the

slowdown less than 10%, the page fault rate must be less than 0.0000025, or one in 399,990 accesses.

 A subtlety is that swap space is faster to access than the regular file system, because it does not

have to go through the whole directory structure. For this reason some systems will transfer an

entire process from the file system to swap space before starting up the process, so that future

paging all occurs from the (relatively) faster swap space.

 Some systems use demand paging directly from the file system for binary code (which never

changes and hence does not have to be stored on a page operation), and to reserve the swap space

for data segments that must be stored. This approach is used by both Solaris and BSD Unix.

Copy-on-Write:

 The idea behind a copy-on-write fork is that

the pages for a parent process do not have to be

actually copied for the child until one or the other of

the processes changes the page. They can be simply

shared between the two processes in the meantime,

with a bit set that the page needs to be copied if it ever

gets written to. This is a reasonable approach, since

the child process usually issues an exec() system call

immediately after the fork.

Figure 9.7 - Before process 1 modifies page C.

146

 Figure 9.8 - After process 1 modifies page C.

 Obviously only pages that can be modified even need to be labeled as copy-on-write. Code segments can

simply be shared.

 Pages used to satisfy copy-on-write duplications are typically allocated using zero-fill-on-demand,

meaning that their previous contents are zeroed out before the copy proceeds.

 Some systems provide an alternative to the fork() system call called a virtual memory fork, vfork(). In

this case the parent is suspended, and the child uses the parent's memory pages. This is very fast for

process creation, but requires that the child not modify any of the shared memory pages before performing

the exec() system call. (In essence this addresses the question of which process executes first after a call to

fork, the parent or the child. With vfork, the parent is suspended, allowing the child to execute first until it

calls exec(), sharing pages with the parent in the meantime.

Page Replacement:

 In order to make the most use of virtual memory, we load several processes into memory at the same time.

Since we only load the pages that are actually needed by each process at any given time, there is room to

load many more processes than if we had to load in the entire process.

 However memory is also needed for other purposes (such as I/O buffering), and what happens if some

process suddenly decides it needs more pages and there aren't any free frames available? There are several

possible solutions to consider:

1. Adjust the memory used by I/O buffering, etc., to free up some frames for user processes. The

decision of how to allocate memory for I/O versus user processes is a complex one, yielding

different policies on different systems. (Some allocate a fixed amount for I/O, and others let the

I/O system contend for memory along with everything else.)

2. Put the process requesting more pages into a wait queue until some free frames become available.

3. Swap some process out of memory completely, freeing up its page frames.

4. Find

some page in memory

that isn't being used

right now, and swap

that page only out to

disk, freeing up a frame

that can be allocated to

the process requesting

it. This is known as

page replacement, and

is the most common

solution. There are

147

many different algorithms for page replacement, which is the subject of the remainder of this

section.

Figure 9.9 - Ned for page replacement.

148

Basic Page Replacement

 The previously discussed page-fault processing assumed that there would be free frames available

on the free-frame list. Now the page-fault handling must be modified to free up a frame if

necessary, as follows:

1. Find the location of the desired page on the disk, either in swap space or in the file system.

2. Find a free frame:

a. If there is a free frame, use it.

b. If there is no free frame, use a page-replacement algorithm to select an existing

frame to be replaced, known as the victim frame.

c. Write the victim frame to disk. Change all related page tables to indicate that this

page is no longer in memory.

3. Read in the desired page and store it in the frame. Adjust all related page and frame tables

to indicate the change.

4. Restart the process that was waiting for this page.

 Figure 9.10 - Page replacement.

 Note that step 3c

adds an extra disk write to the page-

fault handling, effectively doubling

the time required to process a page

fault. This can be alleviated

somewhat by assigning a modify

bit, or dirty bit to each page,

indicating whether or not it has

been changed since it was last

loaded in from disk. If the dirty bit

has not been set, then the page is unchanged, and does not need to be written out to disk.

Otherwise the page write is required. It should come as no surprise that many page replacement

strategies specifically look for pages that do not have their dirty bit set, and preferentially select

clean pages as victim pages. It should also be obvious that unmodifiable code pages never get their

dirty bits set.

 There are two major requirements to implement a successful demand paging system. We must

develop a frame-allocation algorithm and a page-replacement algorithm. The former centers

around how many frames are allocated to each process (and to other needs), and the latter deals

with how to select a page for replacement when there are no free frames available.

 The overall goal in selecting and tuning these algorithms is to generate the fewest number of

overall page faults. Because disk access is so slow relative to memory access, even slight

improvements to these algorithms can yield large improvements in overall system performance.

149

 Algorithms are evaluated using a given string of memory accesses known as a reference string,

which can be generated in one of (at least) three common ways:

1. Randomly generated, either evenly distributed or with some distribution curve based on

observed system behavior. This is the fastest and easiest approach, but may not reflect real

performance well, as it ignores locality of reference.

2. Specifically designed sequences. These are useful for illustrating the properties of comparative

algorithms in published papers and textbooks, (and also for homework and exam problems. :-

))

3. Recorded memory references from a live system. This may be the best approach, but the

amount of data collected can be enormous, on the order of a million addresses per second. The

volume of collected data can be reduced by making two important observations:

1. Only the page number that was accessed is relevant. The offset within that page does not affect

paging operations.

2. Successive accesses within the same page can be treated as a single page request, because all

requests after the first are guaranteed to be page hits. (Since there are no intervening requests

for other pages that could remove this page from the page table.)

 So for example, if pages were of size 100 bytes, then the sequence of address requests (0100,

0432, 0101, 0612, 0634, 0688, 0132, 0038, 0420) would reduce to page requests (1, 4, 1, 6, 1,

0, 4)

 As the number of available frames increases,

the number of page faults should decrease, as shown in

Figure 9.11:

Figure 9.11 - Graph of page faults versus number of

frames.

2. FIFO Page Replacement

 A simple and obvious page replacement strategy is FIFO, i.e. first-in-first-out.

 As new pages are brought in, they are added to the tail of a queue, and the page at the head of the

queue is the next victim. In the following example, 20 page requests result in 15 page faults:

150

Figure 9.12 - FIFO page-replacement algorithm.

 Although FIFO is simple and easy, it is not always optimal, or even efficient.

 An interesting effect that can occur with FIFO is Belady's anomaly, in which increasing the

number of frames available can actually increase the number of page faults that occur! Consider,

for example, the following chart based on the page sequence (1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5) and a

varying number of available frames. Obviously the maximum number of faults is 12 (every

request generates a fault), and the minimum number is 5 (each page loaded only once), but in

between there are some interesting results:

 Figure 9.13 - Page-fault curve for FIFO

replacement on a reference string.

9.4.3 Optimal Page Replacement

 The discovery of Belady's anomaly lead to the search for an optimal page-replacement algorithm,

which is simply that which yields the lowest of all possible page-faults, and which does not suffer

from Belady's anomaly.

 Such an algorithm does exist, and is called OPT or MIN. This algorithm is simply "Replace the

page that will not be used for the longest time in the future."

 For example, Figure 9.14 shows that by applying OPT to the same reference string used for the

FIFO example, the minimum number of possible page faults is 9. Since 6 of the page-faults are

unavoidable (the first reference to each new page), FIFO can be shown to require 3 times as

many (extra) page faults as the optimal algorithm. (Note: The book claims that only the first

three page faults are required by all algorithms, indicating that FIFO is only twice as bad as OPT.)

 Unfortunately OPT cannot be implemented in practice, because it requires foretelling the future,

but it makes a nice benchmark for the comparison and evaluation of real proposed new algorithms.

151

 In practice most page-replacement algorithms try to approximate OPT by predicting (estimating)

in one fashion or another what page will not be used for the longest period of time. The basis of

FIFO is the prediction that the page that was brought in the longest time ago is the one that will not

be needed again for the longest future time, but as we shall see, there are many other prediction

methods, all striving to match the performance of OPT.

Figure 9.14 - Optimal page-replacement algorithm

9.4.4 LRU Page Replacement

 The prediction behind LRU, the Least Recently Used, algorithm is that the page that has not been

used in the longest time is the one that will not be used again in the near future. (Note the

distinction between FIFO and LRU: The former looks at the oldest load time, and the latter looks

at the oldest use time.)

 Some view LRU as analogous to OPT, except looking backwards in time instead of forwards.

(OPT has the interesting property that for any reference string S and its reverse R, OPT will

generate the same number of page faults for S and for R. It turns out that LRU has this same

property.)

 Figure 9.15 illustrates LRU for our sample string, yielding 12 page faults, (as compared to 15 for

FIFO and 9 for OPT.)

Figure 9.15 - LRU page-replacement algorithm.

 LRU is considered a good replacement policy, and is often used. The problem is how exactly to

implement it. There are two simple approaches commonly used:

1. Counters. Every memory access increments a counter, and the current value of this

counter is stored in the page table entry for that page. Then finding the LRU page involves

152

simple searching the table for the page with the smallest counter value. Note that

overflowing of the counter must be considered.

2. Stack. Another approach is to use a stack, and whenever a page is accessed, pull that page

from the middle of the stack and place it on the top. The LRU page will always be at the

bottom of the stack. Because this requires removing objects from the middle of the stack, a

doubly linked list is the recommended data structure.

 Note that both implementations of LRU require hardware support, either for incrementing the

counter or for managing the stack, as these operations must be performed for every memory

access.

 Neither LRU or OPT exhibit Belady's anomaly. Both belong to a class of page-replacement

algorithms called stack algorithms, which can never exhibit Belady's anomaly. A stack algorithm

is one in which the pages kept in memory for a frame set of size N will always be a subset of the

pages kept for a frame size of N + 1. In the case of LRU, (and particularly the stack

implementation thereof), the top N pages of the stack will be the same for all frame set sizes of N

or anything larger.

Figure 9.16 - Use of a stack to record the most recent page references.

9.4.5 LRU-Approximation Page Replacement

 Unfortunately full implementation of LRU requires hardware support, and few systems provide the

full hardware support necessary.

 However many systems offer some degree of HW support, enough to approximate LRU fairly well.

(In the absence of ANY hardware support, FIFO might be the best available choice.)

 In particular, many systems provide a reference bit for every entry in a page table, which is set

anytime that page is accessed. Initially all bits are set to zero, and they can also all be cleared at any

time. One bit of precision is enough to distinguish pages that have been accessed since the last clear

from those that have not, but does not provide any finer grain of detail.

9.4.5.1 Additional-Reference-Bits Algorithm

153

 Finer grain is possible by storing the most recent 8 reference bits for each page in an 8-bit

byte in the page table entry, which is interpreted as an unsigned int.

o At periodic intervals (clock interrupts), the OS takes over, and right-shifts each of

the reference bytes by one bit.

o The high-order (leftmost) bit is then filled in with the current value of the

reference bit, and the reference bits are cleared.

o At any given time, the page with the smallest value for the reference byte is the

LRU page.

 Obviously the specific number of bits used and the frequency with which the reference

byte is updated are adjustable, and are tuned to give the fastest performance on a given

hardware platform.

9.4.5.2 Second-Chance Algorithm

 The second chance algorithm is essentially a FIFO, except the reference bit is used to

give pages a second chance at staying in the page table.

o When a page must be replaced, the page table is scanned in a FIFO (circular

queue) manner.

o If a page is found with its reference bit not set, then that page is selected as the

next victim.

o If, however, the next page in the FIFO does have its reference bit set, then it is

given a second chance:

 The reference bit is cleared, and the FIFO search continues.

 If some other page is found that did not have its reference bit set, then that

page will be selected as the victim, and this page (the one being given the

second chance) will be allowed to stay in the page table.

 If ,

however, there are no other pages that do not have

their reference bit set, then this page will be

selected as the victim when the FIFO search circles

back around to this page on the second pass.

 If all reference bits in the

table are set, then second chance degrades to FIFO,

but also requires a complete search of the table for

every page-replacement.

 As long as there are some

pages whose reference bits are not set, then any

page referenced frequently enough gets to stay in

the page table indefinitely.

154

 This algorithm is also known as the clock algorithm, from the hands of the clock moving

around the circular queue.

Figure 9.17 - Second-chance (clock) page-replacement algorithm.

155

Allocation of Frames:

We said earlier that there were two important tasks in virtual memory management: a page-replacement strategy

and a frame-allocation strategy. This section covers the second part of that pair.

Minimum Number of Frames

 The absolute minimum number of frames that a process must be allocated is dependent on system

architecture, and corresponds to the worst-case scenario of the number of pages that could be

touched by a single (machine) instruction.

 If an instruction (and its operands) spans a page boundary, then multiple pages could be needed

just for the instruction fetch.

 Memory references in an instruction touch more pages, and if those memory locations can span

page boundaries, then multiple pages could be needed for operand access also.

 The worst case involves indirect addressing, particularly where multiple levels of indirect

addressing are allowed. Left unchecked, a pointer to a pointer to a pointer to a pointer to a . . .

could theoretically touch every page in the virtual address space in a single machine instruction,

requiring every virtual page be loaded into physical memory simultaneously. For this reason

architectures place a limit (say 16) on the number of levels of indirection allowed in an

instruction, which is enforced with a counter initialized to the limit and decremented with every

level of indirection in an instruction - If the counter reaches zero, then an "excessive indirection"

trap occurs. This example would still require a minimum frame allocation of 17 per process.

Allocation Algorithms

 Equal Allocation - If there are m frames available and n processes to share them, each process

gets m / n frames, and the leftovers are kept in a free-frame buffer pool.

 Proportional Allocation - Allocate the frames proportionally to the size of the process, relative to

the total size of all processes. So if the size of process i is S_i, and S is the sum of all S_i, then the

allocation for process P_i is a_i = m * S_i / S.

 Variations on proportional allocation could consider priority of process rather than just their size.

 Obviously all allocations fluctuate over time as the number of available free frames, m, fluctuates,

and all are also subject to the constraints of minimum allocation. (If the minimum allocations

cannot be met, then processes must either be swapped out or not allowed to start until more free

frames become available.)

Global versus Local Allocation

 One big question is whether frame allocation (page replacement) occurs on a local or global

level.

156

 With local replacement, the number of pages allocated to a process is fixed, and page replacement

occurs only amongst the pages allocated to this process.

 With global replacement, any page may be a potential victim, whether it currently belongs to the

process seeking a free frame or not.

 Local page replacement allows processes to better control their own page fault rates, and leads to

more consistent performance of a given process over different system load levels.

 Global page replacement is overall more efficient, and is the more commonly used approach.

9.5.4 Non-Uniform Memory Access

 The above arguments all assume that all memory is equivalent, or at least has equivalent access

times.

 This may not be the case in multiple-processor systems, especially where each CPU is physically

located on a separate circuit board which also holds some portion of the overall system memory.

 In these latter systems, CPUs can access memory that is physically located on the same board

much faster than the memory on the other boards.

 The basic solution is akin to processor affinity - At the same time that we try to schedule processes

on the same CPU to minimize cache misses, we also try to allocate memory for those processes on

the same boards, to minimize access times.

 The presence of threads complicates the picture, especially when the threads get loaded onto

different processors.

 Solaris uses an lgroup as a solution, in a hierarchical fashion based on relative latency. For

example, all processors and RAM on a single board would probably be in the same lgroup.

Memory assignments are made within the same lgroup if possible, or to the next nearest lgroup

otherwise. (Where "nearest" is defined as having the lowest access time.)

Thrashing

 If a process cannot maintain its minimum required number of frames, then it must be swapped out, freeing

up frames for other processes. This is an intermediate level of CPU scheduling.

 But what about a process that can keep its minimum, but cannot keep all of the frames that it is currently

using on a regular basis? In this case it is forced to page out pages that it will need again in the very near

future, leading to large numbers of page faults.

 A process that is spending more time paging than executing is said to be thrashing.

Cause of Thrashing

 Early process scheduling schemes would control the level of multiprogramming allowed based on

CPU utilization, adding in more processes when CPU utilization was low.

157

 The problem is that when memory filled up and processes started spending lots of time waiting for

their pages to page in, then CPU utilization would lower, causing the schedule to add in even more

processes and exacerbating the problem!

Eventually the system would essentially

grind to a halt.

 Local page replacement

policies can prevent one thrashing process

from taking pages away from other

processes, but it still tends to clog up the I/O

queue, thereby slowing down any other

process that needs to do even a little bit of

paging (or any other I/O for that matter.)

Figure 9.18 - Thrashing

 To prevent thrashing we must provide processes with

as many frames as they really need "right now", but how do we know

what that is?

 The locality model notes that processes typically

access memory references in a given locality, making lots of

references to the same general area of memory before moving

periodically to a new locality, as shown in Figure 9.19 below. If we

could just keep as many frames as are involved in the current locality,

then page faulting would occur primarily on switches from one

locality to another. (E.g. when one function exits and another is

called.)

Figure 9.19 - Locality in a memory-reference pattern.

Working-Set Model

 The working set model is based on the concept of locality, and defines a working set window, of

length delta. Whatever pages are included in the most recent delta page references are said to be in

the processes working set window, and comprise its current working set, as illustrated in Figure

9.20:

158

Figure 9.20 - Working-set model.

 The selection of delta is critical to the success of the working set model - If it is too small then it

does not encompass all of the pages of the current locality, and if it is too large, then it

encompasses pages that are no longer being frequently accessed.

 The total demand, D, is the sum of the sizes of the working sets for all processes. If D exceeds the

total number of available frames, then at least one process is thrashing, because there are not

enough frames available to satisfy its minimum working set. If D is significantly less than the

currently available frames, then additional processes can be launched.

 The hard part of the working-set model is keeping track of what pages are in the current working

set, since every reference adds one to the set and removes one older page. An approximation can

be made using reference bits and a timer that goes off after a set interval of memory references:

o For example, suppose that we set the timer to go off after every 5000 references (by any

process), and we can store two additional historical reference bits in addition to the

current reference bit.

o Every time the timer goes off, the current reference bit is copied to one of the two

historical bits, and then cleared.

o If any of the three bits is set, then that page was referenced within the last 15,000

references, and is considered to be in that processes reference set.

o Finer resolution can be achieved with more historical bits and a more frequent timer, at the

expense of greater overhead.

Page-Fault Frequency

 A more direct approach is to recognize that what we really want to control is the page-fault rate,

and to allocate frames based on this directly measurable value. If the page-fault rate exceeds a

certain upper bound then that process needs more frames, and if it is below a given lower bound,

then it can afford to give up some of its frames to other processes.

159

 (I suppose a page-

replacement strategy could be devised that

would select victim frames based on the

process with the lowest current page-fault

frequency.)

Figure 9.21 - Page-fault frequency.

 Note that there is a direct

relationship between the page-fault rate and

the working-set, as a process moves from one

locality to another:

Unnumbered side bar in Ninth Edition

Memory-Mapped Files

 Rather than accessing data files directly via the file system with every file access, data files can be paged

into memory the same as process files, resulting in much faster accesses (except of course when page-

faults occur.) This is known as memory-mapping a file.

9.7.1 Basic Mechanism

 Basically a file is mapped to an address range within a process's virtual address space, and then

paged in as needed using the ordinary demand paging system.

 Note that file writes are made to the memory page frames, and are not immediately written out to

disk. (This is the purpose of the "flush()" system call, which may also be needed for stdout in

some cases. See the timekiller program for an example of this.)

https://www.cs.uic.edu/~jbell/CourseNotes/timeKiller.html

160

 This is also why it is important to "close()" a file when one is done writing to it - So that the data

can be safely flushed out to disk and so that the memory

frames can be freed up for other purposes.

 Some systems provide special system calls to

memory map files and use direct disk access otherwise. Other

systems map the file to process address space if the special

system calls are used and map the file to kernel address space

otherwise, but do memory mapping in either case.

 File sharing is made possible by mapping the

same file to the address space of more than one process, as

shown in Figure 9.23 below. Copy-on-write is supported, and

mutual exclusion techniques (chapter 6) may be needed to

avoid synchronization problems.

Figure 9.22 Memory-mapped files.

 Shared memory can be implemented via shared memory-mapped files (Windows), or it can be

implemented through a separate process (Linux, UNIX.)

9.7.2 Shared Memory in the Win32 API

 Windows implements shared memory using shared memory-mapped files, involving three basic

steps:

1. Create a file,

producing a HANDLE to the new file.

2. Name the file as a

shared object, producing a HANDLE to

the shared object.

3. Map the shared

object to virtual memory address space,

returning its base address as a void pointer

(LPVOID).

 This is illustrated in

Figures 9.24 to 9.26 (annotated.)

Figure 9.23 - Shared memory in Windows using memory-mapped

I/O.

Memory-Mapped I/O

161

 All access to devices is done by writing into (or reading from) the device's registers. Normally this is

done via special I/O instructions.

 For certain devices it makes sense to simply map the device's registers to addresses in the process's

virtual address space, making device I/O as fast and simple as any other memory access. Video

controller cards are a classic example of this.

 erial and parallel devices can also use memory mapped I/O, mapping the device registers to specific

memory addresses known as I/O Ports, e.g. 0xF8. Transferring a series of bytes must be done one at a

time, moving only as fast as the I/O device is prepared to process the data, through one of two

mechanisms:

o Programmed I/O (PIO), also known as polling. The CPU periodically checks the control bit on the

device, to see if it is ready to handle another byte of data.

o Interrupt Driven. The device generates an interrupt when it either has another byte of data to deliver or

is ready to receive another byte.

Allocating Kernel Memory

 Previous discussions have centered on process memory, which can be conveniently broken up into page-

sized chunks, and the only fragmentation that occurs is the average half-page lost to internal fragmentation

for each process (segment.)

 There is also additional memory allocated to the kernel, however, which cannot be so easily paged. Some

of it is used for I/O buffering and direct access by devices, example, and must therefore be contiguous and

not affected by paging. Other memory is used for internal kernel data structures of various sizes, and since

kernel memory is often locked (restricted from being ever swapped out), management of this resource

must be done carefully to avoid internal fragmentation or other waste. (I.e. you would like the kernel to

consume as little memory as possible, leaving as much as possible for user processes.) Accordingly there

are several classic algorithms in place for allocating kernel memory structures.

9.8.1 Buddy System

 The Buddy System allocates memory using a power of two allocator.

 Under this scheme, memory is always allocated as a power of 2 (4K, 8K, 16K, etc), rounding up

to the next nearest power of two if necessary.

 If a block of the correct size is not currently available, then one is formed by splitting the next

larger block in two, forming two matched buddies. (And if that larger size is not available, then

the next largest available size is split, and so on.)

 One nice feature of the buddy system is that if the address of a block is exclusively ORed with the

size of the block, the resulting address is the address of the buddy of the same size, which allows

for fast and easy coalescing of free blocks back into larger blocks.

o Free lists are maintained for every size block.

o If the necessary block size is not available upon request, a free block from the next largest

size is split into two buddies of the desired size. (Recursively splitting larger size blocks if

necessary.)

162

o When a block is freed, its buddy's address is calculated, and the free list for that size block

is checked to see if the buddy is also free. If it is, then the two buddies are coalesced into

one larger free block, and the process is repeated with successively larger free lists.

o See the (annotated) Figure 9.27 below for an example.

Figure 9.26

9.8.2 Slab Allocation

 Slab Allocation allocates memory to the kernel in chunks called slabs, consisting of one or more

contiguous pages. The kernel then creates separate caches for each type of data structure it might

need from one or more slabs. Initially the caches are marked empty, and are marked full as they

are used.

 New requests for space in the cache is first granted from empty or partially empty slabs, and if all

slabs are full, then additional slabs are allocated.

 (This essentially amounts to allocating space for arrays of structures, in large chunks suitable to

the size of the structure being stored. For example if a particular structure were 512 bytes long,

space for them would be allocated in groups of 8 using 4K pages. If the structure were 3K, then

space for 4 of them could be allocated at one time in a slab of 12K using three 4K pages.

 Benefits of slab allocation include lack of internal fragmentation and fast allocation of space for

individual structures

 Solaris uses slab allocation for the kernel and also for certain user-mode memory allocations.

Linux used the buddy system prior to 2.2

and switched to slab allocation since then.

 New in 9th Edition: Linux

SLOB and SLUB allocators replace SLAB

o SLOB, Simple List

of Blocks, maintains 3 linked lists of free

blocks - small, medium, and large - designed

163

for (imbedded) systems with limited amounts of memory.

o SLUB modifies some implementation issues for better performance on systems with large

numbers of processors.

Figure 9.27 - Slab allocation.

Other Considerations

9.9.1 Prepaging

 The basic idea behind prepaging is to predict the pages that will be needed in the near future, and

page them in before they are actually requested.

 If a process was swapped out and we know what its working set was at the time, then when we

swap it back in we can go ahead and page back in the entire working set, before the page faults

actually occur.

 With small (data) files we can go ahead and prepage all of the pages at one time.

 Prepaging can be of benefit if the prediction is good and the pages are needed eventually, but

slows the system down if the prediction is wrong.

9.9.2 Page Size

 There are quite a few trade-offs of small versus large page sizes:

 Small pages waste less memory due to internal fragmentation.

 Large pages require smaller page tables.

 For disk access, the latency and seek times greatly outweigh the actual data transfer times. This

makes it much faster to transfer one large page of data than two or more smaller pages containing

the same amount of data.

 Smaller pages match locality better, because we are not bringing in data that is not really needed.

 Small pages generate more page faults, with attending overhead.

 The physical hardware may also play a part in determining page size.

 It is hard to determine an "optimal" page size for any given system. Current norms range from 4K

to 4M, and tend towards larger page sizes as time passes.

9.9.3 TLB Reach

 TLB Reach is defined as the amount of memory that can be reached by the pages listed in the

TLB.

 Ideally the working set would fit within the reach of the TLB.

164

 Increasing the size of the TLB is an obvious way of increasing TLB reach, but TLB memory is

very expensive and also draws lots of power.

 Increasing page sizes increases TLB reach, but also leads to increased fragmentation loss.

 Some systems provide multiple size pages to increase TLB reach while keeping fragmentation

low.

 Multiple page sizes requires that the TLB be managed by software, not hardware.

9.9.4 Inverted Page Tables

 Inverted page tables store one entry for each frame instead of one entry for each virtual page. This

reduces the memory requirement for the page table, but loses the information needed to implement

virtual memory paging.

 A solution is to keep a separate page table for each process, for virtual memory management

purposes. These are kept on disk, and only paged in when a page fault occurs. (I.e. they are not

referenced with every memory access the way a traditional page table would be.)

9.9.5 Program Structure

 Consider a pair of nested loops to access every element in a 1024 x 1024 two-dimensional array of

32-bit ints.

 Arrays in C are stored in row-major order, which means that each row of the array would occupy a

page of memory.

 If the loops are nested so that the outer loop increments the row and the inner loop increments the

column, then an entire row can be processed before the next page fault, yielding 1024 page faults

total.

 On the other hand, if the loops are nested the other way, so that the program worked down the

columns instead of across the rows, then every access would be to a different page, yielding a new

page fault for each access, or over a million page faults all together.

 Be aware that different languages store their arrays

differently. FORTRAN for example stores arrays in column-major

format instead of row-major. This means that blind translation of code

from one language to another may turn a fast program into a very slow

one, strictly because of the extra page faults.

9.9.6 I/O Interlock and Page Locking

There are several occasions when it may be desirable to lock pages in

memory, and not let them get paged out:

165

 Certain kernel operations cannot tolerate having their pages swapped out.

 If an I/O controller is doing direct-memory access, it would be wrong to change pages in the

middle of the I/O operation.

 In a priority based scheduling system, low priority jobs may need to wait quite a while before

getting their turn on the CPU, and there is a danger of their pages being paged out before they get

a chance to use them even once after paging them in. In this situation pages may be locked when

they are paged in, until the process that requested them gets at least one turn in the CPU.

Figure 9.28 - The reason why frames used for I/O must be in memory.

Operating-System Examples (Optional)

9.10.1 Windows

 Windows uses demand paging with clustering, meaning they page in multiple pages whenever a

page fault occurs.

 The working set minimum and maximum are normally set at 50 and 345 pages respectively.

(Maximums can be exceeded in rare circumstances.)

 Free pages are maintained on a free list, with a minimum threshold indicating when there are

enough free frames available.

 If a page fault occurs and the process is below their maximum, then additional pages are allocated.

Otherwise some pages from this process must be replaced, using a local page replacement

algorithm.

 If the amount of free frames falls below the allowable threshold, then working set trimming

occurs, taking frames away from any processes which are above their minimum, until all are at

their minimums. Then additional frames can be allocated to processes that need them.

 The algorithm for selecting victim frames depends on the type of processor:

o On single processor 80x86 systems, a variation of the clock (second chance) algorithm is

used.

o On Alpha and multiprocessor systems, clearing the reference bits may require invalidating

entries in the TLB on other processors, which is an expensive operation. In this case

Windows uses a variation of FIFO.

9.10.2 Solaris

 Solaris maintains a list of free pages, and allocates one to a faulting thread whenever a fault

occurs. It is therefore imperative that a minimum amount of free memory be kept on hand at all

times.

166

 Solaris has a parameter, lotsfree, usually set at 1/64 of total physical memory. Solaris checks 4

times per second to see if the free memory falls below this threshhold, and if it does, then the

pageout process is started.

 Pageout uses a variation of the clock (second chance) algorithm, with two hands rotating around

through the frame table. The first hand clears the reference bits, and the second hand comes by

afterwards and checks them. Any frame whose reference bit has not been reset before the second

hand gets there gets paged out.

 The Pageout method is adjustable by the distance between the two hands, (the handspan), and

the speed at which the hands move. For example, if the hands each check 100 frames per second,

and the handspan is 1000 frames, then there would be a 10 second interval between the time when

the leading hand clears the reference bits and the time when the trailing hand checks them.

 The speed of the hands is usually adjusted according to the amount of free memory, as shown

below. Slowscan is usually set at 100 pages per second, and fastscan is usually set at the smaller

of 1/2 of the total physical pages per second and 8192 pages per second.

Figure 9.29 - Solaris page scanner.

 Solaris also maintains a cache of pages that have been reclaimed but which have not yet been

overwritten, as opposed to the free list which only holds pages whose current contents are invalid.

If one of the pages from the cache is needed before it gets moved to the free list, then it can be

quickly recovered.

 Normally pageout runs 4 times per second to check if memory has fallen below lotsfree. However

if it falls below desfree, then pageout will run at 100 times per second in an attempt to keep at least

desfree pages free. If it is unable to do this for a 30-second average, then Solaris begins swapping

processes, starting preferably with processes that have been idle for a long time.

 If free memory falls below minfree, then pageout runs with every page fault.

 Recent releases of Solaris have enhanced the virtual memory management system, including

recognizing pages from shared libraries, and protecting them from being paged out.

167

 STORAGE MANAGEMENT

File-System Interface

File Concept:

File Attributes:

 Different OSes keep track of different file

attributes, including:

o Name - Some systems give special

significance to names, and particularly extensions (.exe, .txt, etc.

), and some do not. Some extensions may be of significance to the

OS (.exe), and others only to certain applications (.jpg)

o Identifier (e.g. inode number)

o Type - Text, executable, other binary, etc.

o Location - on the hard drive.

o Size

o Protection

o Time & Date

o User ID

File Operations:

 The file ADT supports many common operations:

o Creating a file

o Writing a file

o Reading a file

o Repositioning within a file

o Deleting a file

o Truncating a file.

 Most Operating Systems require that files be

opened before access and closed after all access is complete.

Normally the programmer must open and close files explicitly, but

some rare systems open the file automatically at first access.

Information about currently open files is stored in an open file

table, containing for example:

o File pointer - records the current position in

the file, for the next read or write access.

o File-open count - How many times has the

current file been opened (simultaneously by different processes)

and not yet closed? When this counter reaches zero the file can be removed from

the table.

o Disk location of the file.

o Access rights
 Some systems provide support for file locking.

o A shared lock is for reading only.

o A exclusive lock is for writing as well as reading.

o An advisory lock is informational only, and not enforced. (A "Keep Out" sign,

which may be ignored.)

o A mandatory lock is enforced. (A truly locked door.)

o UNIX used advisory locks, and Windows uses mandatory locks.

168

File Types:

 Windows (and some other

systems) use special file extensions to indicate the

type of each file:

Figure 11.3 - Common file types.

 Macintosh stores a creator attribute

for each file, according to the program that first

created it with the create() system call.

 UNIX stores magic numbers at the

beginning of certain files. (Experiment with the

"file" command, especially in directories such as

/bin and /dev)

File Structure:

 Some files contain an internal structure, which may or may not be known to the OS.

 For the OS to support particular file formats increases the size and complexity of the OS.

 UNIX treats all files as sequences of bytes, with no further consideration of the internal

structure. (With the exception of executable binary programs, which it must know how to

load and find the first executable statement, etc.)

 Macintosh files have two forks - a resource fork, and a data fork. The resource fork

contains information relating to the UI, such as icons and button images, and can be

modified independently of the data fork, which contains the code or data as appropriate.

Internal File Structure

 Disk files are accessed in units of physical blocks, typically 512 bytes or some power-of-

two multiple thereof. (Larger physical disks use larger block sizes, to keep the range of

block numbers within the range of a 32-bit integer.)

 Internally files are organized in units of logical units, which may be as small as a single

byte, or may be a larger size corresponding to some data record or structure size.

169

 The number of logical units which fit into one physical block determines its packing, and

has an impact on the amount of internal fragmentation (wasted space) that occurs.

 As a general rule, half a physical block is wasted for each file, and the larger the block

sizes the more space is lost to internal fragmentation.

Access Methods

1 Sequential Access:

 A sequential access file emulates magnetic tape operation, and generally supports a few

operations:

o read next - read a record and advance the tape to the next position.

o write next - write a record and advance the tape to the next position.

o rewind

o skip n records - May or may not be supported. N may be limited to positive

numbers, or may be limited to +/- 1.

Figure 11.4 - Sequential-access file.

2 Direct Access:

 Jump to any record and read that record. Operations supported include:

o read n - read record number n. (Note an argument is now required.)

o write n - write record number n. (Note an argument is now required.)

o jump to record n - could be 0 or the end of file.

o Query current record - used to return back to this record later.

o Sequential access can be easily emulated using direct access. The inverse is

complicated and inefficient.

Figure 11.5 - Simulation of sequential access on a direct-access file.

170

3 Other Access Methods:

 An indexed access scheme can be easily built on top of a direct access system. Very large

files may require a multi-tiered indexing scheme, i.e. indexes of indexes.

Figure 11.6 - Example of index and relative files.

Directory Structure

1 Storage Structure

 A disk can be used in its entirety for a file system.

 Alternatively a physical disk can be broken up into multiple partitions, slices, or mini-

disks, each of which becomes a virtual disk and can have its own filesystem. (or be used

for raw storage, swap space, etc.)

 Or, multiple physical disks can be combined into one volume, i.e. a larger virtual disk,

with its own filesystem spanning the physical disks.

Figure 11.7 - A typical file-system organization.

171

2 Directory Overview

 Directory operations to be supported include:

o Search for a file

o Create a file - add to the directory

o Delete a file - erase from the directory

o List a directory - possibly ordered in different ways.

o Rename a file - may change sorting order

o Traverse the file system.

3. Single-Level Directory

 Simple to implement, but each file must have a unique name.

Figure 11.9 - Single-level directory.

4 Two-Level Directory

 Each user gets their own directory space.

 File names only need to be unique within a given user's directory.

 A master file directory is used to keep track of each users directory, and must be

maintained when users are added to or removed from the system.

 A separate directory is generally needed for system (executable) files.

 Systems may or may not allow users to access other directories besides their own

o If access to other directories is allowed, then provision must be made to specify the

directory being accessed.

o If access is denied, then special consideration must be made for users to run

programs located in system directories. A search path is the list of directories in

which to search for executable programs, and can be set uniquely for each user.

Figure 11.10 - Two-level directory structure.

5 Tree-Structured Directories

172

 An obvious extension to the two-tiered directory structure, and the one with which we are

all most familiar.

 Each user / process has the concept of a current directory from which all (relative)

searches take place.

 Files may be accessed using either absolute pathnames (relative to the root of the tree) or

relative pathnames (relative to the current directory.)

 Directories are stored the same as any other file in the system, except there is a bit that

identifies them as directories, and they have some special structure that the OS

understands.

 One question for consideration is whether or not to allow the removal of directories that

are not empty - Windows requires that directories be emptied first, and UNIX provides an

option for deleting entire sub-trees.

Figure 11.11 - Tree-structured directory structure.

6 Acyclic-Graph Directories

 When the same files need to be accessed in more than one place in the directory structure

(e.g. because they are being shared by more than one user / process), it can be useful to

provide an acyclic-graph structure. (Note the directed arcs from parent to child.)

 UNIX provides two types of links for implementing the acyclic-graph structure. (See

"man ln" for more details.)

o A hard link (usually just called a link) involves multiple directory entries that

both refer to the same file. Hard links are only valid for ordinary files in the same

filesystem.

o A symbolic link, that involves a special file, containing information about where to

find the linked file. Symbolic links may be used to link directories and/or files in

other filesystems, as well as ordinary files in the current filesystem.

 Windows only supports symbolic links, termed shortcuts.

173

 Hard links require a reference count, or link count for each file, keeping track of how

many directory entries are currently referring to this file. Whenever one of the references

is removed the link count is reduced, and when it reaches zero, the disk space can be

reclaimed.

 For symbolic links there is some question as to what to do with the symbolic links when

the original file is moved or deleted:

o One option is to find all the symbolic links and adjust them also.

o Another is to leave the symbolic links dangling, and discover that they are no

longer valid the next time they are used.

o What if the original file is removed, and replaced with another file having the same

name before the symbolic link is next used?

Figure 11.12 - Acyclic-graph directory structure.

7 General Graph Directory

 If cycles are allowed in the graphs, then several problems can arise:

o Search algorithms can go into infinite loops. One solution is to not follow links in

search algorithms. (Or not to follow symbolic links, and to only allow symbolic

links to refer to directories.)

o Sub-trees can become disconnected from the rest of the tree and still not have their

reference counts reduced to zero. Periodic garbage collection is required to detect

and resolve this problem. (chkdsk in DOS and fsck in UNIX search for these

problems, among others, even though cycles are not supposed to be allowed in

either system. Disconnected disk blocks that are not marked as free are added back

to the file systems with made-up file names, and can usually be safely deleted.)

174

Figure 11.13 - General graph directory.

File-System Mounting

 The basic idea behind mounting file systems is to combine multiple file systems into one large

tree structure.

 The mount command is given a filesystem to mount and a mount point (directory) on which to

attach it.

 Once a file system is mounted onto a mount point, any further references to that directory actually

refer to the root of the mounted file system.

 Any files (or sub-directories) that had been stored in the mount point directory prior to mounting

the new filesystem are now hidden by the mounted filesystem, and are no longer available. For

this reason some systems only allow mounting onto empty directories.

 Filesystems can only be mounted by root, unless root has previously configured certain

filesystems to be mountable onto certain pre-determined mount points. (E.g. root may allow users

to mount floppy filesystems to /mnt or something like it.) Anyone can run the mount command to

see what filesystems are currently mounted.

 Filesystems may be mounted read-only, or have other restrictions imposed.

Figure 11.14 - File system. (a) Existing system. (b) Unmounted volume.

175

Figure 11.15 - Mount point.

 The traditional Windows OS runs an extended two-tier directory structure, where the first tier of

the structure separates volumes by drive letters, and a tree structure is implemented below that

level.

 Macintosh runs a similar system, where each new volume that is found is automatically mounted

and added to the desktop when it is found.

 More recent Windows systems allow filesystems to be mounted to any directory in the filesystem,

much like UNIX.

File Sharing

1 Multiple Users

 On a multi-user system, more information needs to be stored for each file:

o The owner (user) who owns the file, and who can control its access.

o The group of other user IDs that may have some special access to the file.

o What access rights are afforded to the owner (User), the Group, and to the rest of

the world (the universe, a.k.a. Others.)

o Some systems have more complicated access control, allowing or denying specific

accesses to specifically named users or groups.

2 Remote File Systems

 The advent of the Internet introduces issues for accessing files stored on remote computers

o The original method was ftp, allowing individual files to be transported across

systems as needed. Ftp can be either account and password controlled, or

anonymous, not requiring any user name or password.

o Various forms of distributed file systems allow remote file systems to be mounted

onto a local directory structure, and accessed using normal file access commands.

176

(The actual files are still transported across the network as needed, possibly using

ftp as the underlying transport mechanism.)

o The WWW has made it easy once again to access files on remote systems without

mounting their filesystems, generally using (anonymous) ftp as the underlying

file transport mechanism.

2.1 The Client-Server Model

 When one computer system remotely mounts a filesystem that is physically located

on another system, the system which physically owns the files acts as a server, and

the system which mounts them is the client.

 User IDs and group IDs must be consistent across both systems for the system to

work properly. (I.e. this is most applicable across multiple computers managed by

the same organization, shared by a common group of users.)

 The same computer can be both a client and a server. (E.g. cross-linked file

systems.)

 There are a number of security concerns involved in this model:

o Servers commonly restrict mount permission to certain trusted systems

only. Spoofing (a computer pretending to be a different computer) is a

potential security risk.

o Servers may restrict remote access to read-only.

o Servers restrict which filesystems may be remotely mounted. Generally the

information within those subsystems is limited, relatively public, and

protected by frequent backups.

 The NFS (Network File System) is a classic example of such a system.

2.2 Distributed Information Systems

 The Domain Name System, DNS, provides for a unique naming system across all

of the Internet.

 Domain names are maintained by the Network Information System, NIS, which

unfortunately has several security issues. NIS+ is a more secure version, but has

not yet gained the same widespread acceptance as NIS.

 Microsoft's Common Internet File System, CIFS, establishes a network login for

each user on a networked system with shared file access. Older Windows systems

used domains, and newer systems (XP, 2000), use active directories. User names

must match across the network for this system to be valid.

177

 A newer approach is the Lightweight Directory-Access Protocol, LDAP, which

provides a secure single sign-on for all users to access all resources on a network.

This is a secure system which is gaining in popularity, and which has the

maintenance advantage of combining authorization information in one central

location.

2.3 Failure Modes

 When a local disk file is unavailable, the result is generally known immediately,

and is generally non-recoverable. The only reasonable response is for the response

to fail.

 However when a remote file is unavailable, there are many possible reasons, and

whether or not it is unrecoverable is not readily apparent. Hence most remote

access systems allow for blocking or delayed response, in the hopes that the

remote system (or the network) will come back up eventually.

Protection

 Files must be kept safe for reliability (against accidental damage), and protection (against

deliberate malicious access.) The former is usually managed with backup copies. This section

discusses the latter.

 One simple protection scheme is to remove all access to a file. However this makes the file

unusable, so some sort of controlled access must be arranged.

1 Types of Access

 The following low-level operations are often controlled:

o Read - View the contents of the file

o Write - Change the contents of the file.

o Execute - Load the file onto the CPU and follow the instructions contained therein.

o Append - Add to the end of an existing file.

o Delete - Remove a file from the system.

o List -View the name and other attributes of files on the system.

 Higher-level operations, such as copy, can generally be performed through combinations

of the above.

2 Access Control

178

 One approach is to have complicated Access Control Lists, ACL, which specify exactly

what access is allowed or denied for specific users or groups.

o The AFS uses this system for distributed access.

o Control is very finely adjustable, but may be complicated, particularly when the

specific users involved are unknown. (AFS allows some wild cards, so for

example all users on a certain remote system may be trusted, or a given username

may be trusted when accessing from any remote system.)

 UNIX uses a set of 9 access control bits, in three groups of three. These correspond to R,

W, and X permissions for each of the Owner, Group, and Others. (See "man chmod" for

full details.) The RWX bits control the following privileges for ordinary files and

directories:

bit Files Directories

R
Read (view)

file contents.
Read directory contents. Required to get a listing of the directory.

W

Write

(change) file

contents.

Change directory contents. Required to create or delete files.

X

Execute file

contents as a

program.

Access detailed directory information. Required to get a long listing,

or to access any specific file in the directory. Note that if a user has

X but not R permissions on a directory, they can still access specific

files, but only if they already know the name of the file they are

trying to access.

 In addition there are some special bits that can also be applied:

o The set user ID (SUID) bit and/or the set group ID (SGID) bits applied to

executable files temporarily change the identity of whoever runs the program to

match that of the owner / group of the executable program. This allows users

running specific programs to have access to files (while running that program)

to which they would normally be unable to access. Setting of these two bits is

usually restricted to root, and must be done with caution, as it introduces a

potential security leak.

o The sticky bit on a directory modifies write permission, allowing users to only

delete files for which they are the owner. This allows everyone to create files in

/tmp, for example, but to only delete files which they have created, and not anyone

else's.

o The SUID, SGID, and sticky bits are indicated with an S, S, and T in the positions

for execute permission for the user, group, and others, respectively. If the letter is

179

lower case, (s, s, t), then the corresponding execute permission is not also given.

If it is upper case, (S, S, T), then the corresponding execute permission IS given.

o The numeric form of chmod is needed to set these advanced bits.

Sample permissions in a UNIX system.

 Windows adjusts files access through a simple GUI:

Figure 11.16 - Windows 7 access-control list

management.

11.6.3 Other Protection Approaches and Issues

 Some systems can apply passwords, either to

individual files, or to specific sub-directories, or to the entire

system. There is a trade-off between the number of

passwords that must be maintained (and remembered by the

users) and the amount of information that is vulnerable to a

lost or forgotten password.

 Older systems which did not originally have

multi-user file access permissions (DOS and older versions

of Mac) must now be retrofitted if they are to share files on a network.

 Access to a file requires access to all the files along its path as well. In a cyclic directory

structure, users may have different access to the same file accessed through different

paths.

 Sometimes just the knowledge of the existence of a file of a certain name is a security (or

privacy) concern. Hence the distinction between the R and X bits on UNIX directories.

180

181

File-System Implementation

File-System Structure

 Hard disks have two important properties that make them suitable for secondary storage of files in

file systems: (1) Blocks of data can be rewritten in place, and (2) they are direct access, allowing

any block of data to be accessed with only (relatively) minor movements of the disk heads and

rotational latency. (See Chapter 12)

 Disks are usually accessed in physical blocks, rather than a byte at a time. Block sizes may range

from 512 bytes to 4K or larger.

 File systems organize storage on disk drives, and can be viewed as a layered design:

o At the lowest layer are the physical devices, consisting of the magnetic media, motors &

controls, and the electronics connected to them and controlling them. Modern disk put

more and more of the electronic controls directly on the disk drive itself, leaving relatively

little work for the disk controller card to perform.

o I/O Control consists of device drivers, special software programs (often written in

assembly) which communicate with the devices by reading and writing special codes

directly to and from memory addresses corresponding to the controller card's registers.

Each controller card (device) on a system has a different set of addresses (registers,

a.k.a. ports) that it listens to, and a unique set of command codes and results codes that it

understands.

o The basic file system level works directly with the device drivers in terms of retrieving

and storing raw blocks of data, without any consideration for what is in each block.

Depending on the system, blocks may be referred to with a single block

number, (e.g. block # 234234), or with head-sector-cylinder combinations.

o The file organization module knows about files and their

logical blocks, and how they map to physical blocks on the disk. In addition

to translating from logical to physical blocks, the file organization module

also maintains the list of free blocks, and allocates free blocks to files as

needed.

o The logical file system deals with all of the meta data

associated with a file (UID, GID, mode, dates, etc), i.e. everything about

the file except the data itself. This level manages the directory structure and

the mapping of file names to file control blocks, FCBs, which contain all

of the meta data as well as block number information for finding the data

on the disk.

 The layered approach to file systems means that much of the code

can be used uniformly for a wide variety of different file systems, and only

certain layers need to be filesystem specific. Common file systems in use

include the UNIX file system, UFS, the Berkeley Fast File System, FFS,

Windows systems FAT, FAT32, NTFS, CD-ROM systems ISO 9660, and

for Linux the extended file systems ext2 and ext3 (among 40 others

supported.)

Figure 12.1 - Layered file system.

File-System Implementation

1 Overview

 File systems store several important data structures on the disk:

182

o A boot-control block, (per volume) a.k.a. the boot block in UNIX or the partition

boot sector in Windows contains information about how to boot the system off of

this disk. This will generally be the first sector of the volume if there is a bootable

system loaded on that volume, or the block will be left vacant otherwise.

o A volume control block, (per volume) a.k.a. the master file table in UNIX or the

superblock in Windows, which contains information such as the partition table,

number of blocks on each filesystem, and pointers to free blocks and free FCB

blocks.

o A directory structure (per file system), containing file names and pointers to

corresponding FCBs. UNIX uses inode numbers, and NTFS uses a master file

table.
o The File Control Block, FCB, (per file) containing details about ownership, size,

permissions, dates, etc. UNIX stores this information in inodes, and NTFS in the

master file table as a relational database structure.

Figure 12.2 - A typical file-control block.

 There are also several key data structures stored in memory:

o An in-memory mount table.

o An in-memory directory cache of recently accessed directory information.

o A system-wide open file table, containing a copy of the FCB for every currently

open file in the system, as well as some other related information.

o A per-process open file table, containing a pointer to the system open file table as

well as some other information. (For example the current file position pointer may

be either here or in the system file table, depending on the implementation and

whether the file is being shared or not.)

 Figure 12.3 illustrates some of the interactions of file system components when files are

created and/or used:

o When a new file is created, a new FCB is allocated and filled out with important

information regarding the new file. The appropriate directory is modified with the

new file name and FCB information.

o When a file is accessed during a program, the open() system call reads in the FCB

information from disk, and stores it in the system-wide open file table. An entry is

added to the per-process open file table referencing the system-wide table, and an

index into the per-process table is returned by the open() system call. UNIX refers

to this index as a file descriptor, and Windows refers to it as a file handle.

o If another process already has a file open when a new request comes in for the

same file, and it is sharable, then a counter in the system-wide table is incremented

and the per-process table is adjusted to point to the existing entry in the system-

wide table.

o When a file is closed, the per-process table entry is freed, and the counter in the

system-wide table is decremented. If that counter reaches zero, then the system

183

wide table is also freed. Any data currently stored in memory cache for this file is

written out to disk if necessary.

Figure 12.3 - In-memory file-system structures. (a) File open. (b) File read.

2 Partitions and Mounting

 Physical disks are commonly divided into smaller units called partitions. They can also be

combined into larger units, but that is most commonly done for RAID installations and is

left for later chapters.

 Partitions can either be used as raw devices (with no structure imposed upon them), or

they can be formatted to hold a filesystem (i.e. populated with FCBs and initial directory

structures as appropriate.) Raw partitions are generally used for swap space, and may also

be used for certain programs such as databases that choose to manage their own disk

storage system. Partitions containing filesystems can generally only be accessed using the

file system structure by ordinary users, but can often be accessed as a raw device also by

root.

 The boot block is accessed as part of a raw partition, by the boot program prior to any

operating system being loaded. Modern boot programs understand multiple OSes and

filesystem formats, and can give the user a choice of which of several available systems to

boot.

 The root partition contains the OS kernel and at least the key portions of the OS needed to

complete the boot process. At boot time the root partition is mounted, and control is

transferred from the boot program to the kernel found there. (Older systems required that

the root partition lie completely within the first 1024 cylinders of the disk, because that

was as far as the boot program could reach. Once the kernel had control, then it could

access partitions beyond the 1024 cylinder boundary.)

 Continuing with the boot process, additional filesystems get mounted, adding their

information into the appropriate mount table structure. As a part of the mounting process

the file systems may be checked for errors or inconsistencies, either because they are

flagged as not having been closed properly the last time they were used, or just for general

184

principals. Filesystems may be mounted either automatically or manually. In UNIX a

mount point is indicated by setting a flag in the in-memory copy of the inode, so all future

references to that inode get re-directed to the root directory of the mounted filesystem.

3 Virtual File Systems

 Virtual File Systems, VFS, provide a common interface to multiple different filesystem

types. In addition, it provides for a unique identifier (vnode) for files across the entire

space, including across all filesystems of different types. (UNIX inodes are unique only

across a single filesystem, and certainly do not carry across networked file systems.)

 The VFS in Linux is based upon four key object types:

o The inode object, representing an individual file

o The file object, representing an open file.

o The superblock object, representing a filesystem.

o The dentry object, representing a directory entry.

 Linux VFS provides a set of common functionalities for each filesystem, using function

pointers accessed through a table. The same functionality is accessed through the same

table position for all filesystem types, though the actual functions pointed to by the

pointers may be filesystem-specific. See /usr/include/linux/fs.h for full details. Common

operations provided include open(), read(), write(), and mmap().

Figure 12.4 - Schematic view of a virtual file system.

3 Directory Implementation

 Directories need to be fast to search, insert, and delete, with a minimum of wasted disk space.

1 Linear List

 A linear list is the simplest and easiest directory structure to set up, but it does have some

drawbacks.

 Finding a file (or verifying one does not already exist upon creation) requires a linear

search.

 Deletions can be done by moving all entries, flagging an entry as deleted, or by moving

the last entry into the newly vacant position.

http://lxr.linux.no/#linux+v3.11.2/include/linux/fs.h#L523
http://lxr.linux.no/#linux+v3.11.2/include/linux/fs.h#L765
http://lxr.linux.no/#linux+v3.11.2/include/linux/fs.h#L1242
http://lxr.linux.no/#linux+v3.11.2/include/linux/dcache.h#L106

185

 Sorting the list makes searches faster, at the expense of more complex insertions and

deletions.

 A linked list makes insertions and deletions into a sorted list easier, with overhead for the

links.

 More complex data structures, such as B-trees, could also be considered.

2 Hash Table

 A hash table can also be used to speed up searches.

 Hash tables are generally implemented in addition to a linear or other structure

Allocation Methods

 There are three major methods of storing files on disks: contiguous, linked, and indexed.

1 Contiguous Allocation

 Contiguous Allocation requires that all blocks of a file be kept together contiguously.

 Performance is very fast, because reading successive blocks of the same file generally

requires no movement of the disk heads, or at most one small step to the next adjacent

cylinder.

 Storage allocation involves the same issues discussed earlier for the allocation of

contiguous blocks of memory (first fit, best fit, fragmentation problems, etc.) The

distinction is that the high time penalty required for moving the disk heads from spot to

spot may now justify the benefits of keeping files contiguously when possible.

 (Even file systems that do not by default store files contiguously can benefit from certain

utilities that compact the disk and make all files contiguous in the process.)

 Problems can arise when files grow, or if the exact size of a file is unknown at creation

time:

o Over-estimation of the file's final size increases external fragmentation and wastes

disk space.

o Under-estimation may require that a file be moved or a process aborted if the file

grows beyond its originally allocated space.

o If a file grows slowly over a long time period and the total final space must be

allocated initially, then a lot of space becomes unusable before the file fills the

space.

 A variation is to allocate file space in large contiguous chunks, called extents. When a file

outgrows its original extent, then an additional one is allocated. (For example an extent

may be the size of a complete track or even cylinder, aligned on an appropriate track or

cylinder boundary.) The high-performance files system Veritas uses extents to optimize

performance.

186

Figure 12.5 - Contiguous allocation of disk space.

2 Linked Allocation

 Disk files can be stored as linked lists, with the expense of the storage space consumed by

each link. (E.g. a block may be 508 bytes instead of 512.)

 Linked allocation involves no external

fragmentation, does not require pre-known file sizes, and allows

files to grow dynamically at any time.

 Unfortunately linked allocation is only efficient

for sequential access files, as random access requires starting at

the beginning of the list for each new location access.

 Allocating clusters of blocks reduces the space

wasted by pointers, at the cost of internal fragmentation.

 Another big problem with linked allocation is

reliability if a pointer is lost or damaged. Doubly linked lists

provide some protection, at the cost of additional overhead and

wasted space.

Figure 12.6 - Linked allocation of disk space.

 The File Allocation Table, FAT, used by

DOS is a variation of linked allocation, where all the links

are stored in a separate table at the beginning of the disk.

The benefit of this approach is that the FAT table can be

cached in memory, greatly improving random access

speeds.

Figure 12.7 File-allocation table.

3 Indexed Allocation

 Indexed Allocation combines all of the

indexes for accessing each file into a common block (

for that file), as opposed to spreading them all over

the disk or storing them in a FAT table.

 Figure 12.8 - Indexed allocation of disk space.

 Some disk space is wasted (relative to

linked lists or FAT tables) because an entire index

block must be allocated for each file, regardless of

187

how many data blocks the file contains. This leads to questions of how big the index block

should be, and how it should be implemented. There are several approaches:

o Linked Scheme - An index block is one disk block, which can be read and written

in a single disk operation. The first index block contains some header information,

the first N block addresses, and if necessary a pointer to additional linked index

blocks.

o Multi-Level Index - The first index block contains a set of pointers to secondary

index blocks, which in turn contain pointers to the actual data blocks.

o Combined Scheme - This is the scheme used in UNIX inodes, in which the first

12 or so data block pointers are stored directly in the inode, and then singly,

doubly, and triply indirect pointers provide access to more data blocks as needed. (

See below.) The advantage of this scheme is that for small files (which many are

), the data blocks are readily accessible (up to 48K with 4K block sizes); files up

to about 4144K (using 4K blocks) are accessible with only a single indirect block

(which can be cached), and huge files are still accessible using a relatively small

number of disk accesses (larger in theory than can be addressed by a 32-bit

address, which is why some systems have moved to 64-bit file pointers.)

Figure 12.9 - The UNIX inode.

4 Performance

 The optimal allocation method is different for sequential access files than for random

access files, and is also different for small files than for large files.

 Some systems support more than one allocation method, which may require specifying

how the file is to be used (sequential or random access) at the time it is allocated. Such

systems also provide conversion utilities.

 Some systems have been known to use contiguous access for small files, and

automatically switch to an indexed scheme when file sizes surpass a certain threshold.

 And of course some systems adjust their allocation schemes (e.g. block sizes) to best

match the characteristics of the hardware for optimum performance.

Free-Space Management

 Another important aspect of disk management is keeping track of and allocating free

space.

1 Bit Vector

188

 One simple approach is to use a bit vector, in which each bit represents a disk block, set to

1 if free or 0 if allocated.

 Fast algorithms exist for quickly finding contiguous blocks of a given size

 The down side is that a 40GB disk requires over 5MB just to store the bitmap. (For

example.)

2 Linked List

 A linked list can also be used to keep track of all free blocks.

 Traversing the list and/or finding a contiguous block of a given size are not easy, but

fortunately are not frequently needed operations. Generally the system just adds and

removes single blocks from the beginning of the list.

 The FAT table keeps track of the free list as just one more linked list on the table.

Figure 12.10 - Linked free-space list on disk.

3 Grouping

 A variation on linked list free lists is to use links of blocks of indices of free blocks. If a

block holds up to N addresses, then the first block in the linked-list contains up to N-1

addresses of free blocks and a pointer to the next block of free addresses.

4 Counting

 When there are multiple contiguous blocks of free space then the system can keep track of

the starting address of the group and the number of contiguous free blocks. As long as the

average length of a contiguous group of free blocks is greater than two this offers a

savings in space needed for the free list. (Similar to compression techniques used for

graphics images when a group of pixels all the same color is encountered.)

5 Space Maps

 Sun's ZFS file system was designed for HUGE numbers and sizes of files, directories, and

even file systems.

 The resulting data structures could be VERY inefficient if not implemented carefully. For

example, freeing up a 1 GB file on a 1 TB file system could involve updating thousands of

blocks of free list bit maps if the file was spread across the disk.

 ZFS uses a combination of techniques, starting with dividing the disk up into (hundreds

of) metaslabs of a manageable size, each having their own space map.

189

 Free blocks are managed using the counting technique, but rather than write the

information to a table, it is recorded in a log-structured transaction record. Adjacent free

blocks are also coalesced into a larger single free block.

 An in-memory space map is constructed using a balanced tree data structure, constructed

from the log data.

 The combination of the in-memory tree and the on-disk log provide for very fast and

efficient management of these very large files and free blocks.

Efficiency and Performance

1 Efficiency

 UNIX pre-allocates inodes, which occupies space even before any files are created.

 UNIX also distributes inodes across the disk, and tries to store data files near their inode,

to reduce the distance of disk seeks between the inodes and the data.

 Some systems use variable size clusters depending on the file size.

 The more data that is stored in a directory (e.g. last access time), the more often the

directory blocks have to be re-written.

 As technology advances, addressing schemes have had to grow as well.

o Sun's ZFS file system uses 128-bit pointers, which should theoretically never need

to be expanded. (The mass required to store 2^128 bytes with atomic storage

would be at least 272 trillion kilograms!)

 Kernel table sizes used to be fixed, and could only be changed by rebuilding the kernels.

Modern tables are dynamically allocated, but that requires more complicated algorithms

for accessing them.

2 Performance

 Disk controllers generally include on-board caching. When a seek is requested, the heads

are moved into place, and then an entire track is read, starting from whatever sector is

currently under the heads (reducing latency.) The requested sector is returned and the

unrequested portion of the track is cached in the disk's electronics.

 Some OSes cache disk blocks they expect to need again in a buffer cache.

 A page cache connected to the virtual memory system is actually more efficient as

memory addresses do not need to be converted to disk block addresses and back again.

 Some systems (Solaris, Linux, Windows 2000, NT, XP) use page caching for both

process pages and file data in a unified virtual memory.

 Figures 11.11 and 11.12 show the advantages of the unified buffer cache found in some

versions of UNIX and Linux - Data does not need to be stored twice, and problems of

inconsistent buffer information are avoided.

Figure 12.11 - I/O without a unified buffer cache.

190

Figure 12.12 - I/O using a unified buffer cache.

 Page replacement strategies can be complicated with a unified cache, as one needs to

decide whether to replace process or file pages, and how many pages to guarantee to each

category of pages. Solaris, for example, has gone through many variations, resulting in

priority paging giving process pages priority over file I/O pages, and setting limits so that

neither can knock the other completely out of memory.

 Another issue affecting performance is the question of whether to implement synchronous

writes or asynchronous writes. Synchronous writes occur in the order in which the disk

subsystem receives them, without caching; Asynchronous writes are cached, allowing the

disk subsystem to schedule writes in a more efficient order (See Chapter 12.) Metadata

writes are often done synchronously. Some systems support flags to the open call

requiring that writes be synchronous, for example for the benefit of database systems that

require their writes be performed in a required order.

 The type of file access can also have an impact on optimal page replacement policies. For

example, LRU is not necessarily a good policy for sequential access files. For these types

of files progression normally goes in a forward direction only, and the most recently used

page will not be needed again until after the file has been rewound and re-read from the

beginning, (if it is ever needed at all.) On the other hand, we can expect to need the next

page in the file fairly soon. For this reason sequential access files often take advantage of

two special policies:

o Free-behind frees up a page as soon as the next page in the file is requested, with

the assumption that we are now done with the old page and won't need it again for

a long time.

o Read-ahead reads the requested page and several subsequent pages at the same

time, with the assumption that those pages will be needed in the near future. This is

similar to the track caching that is already performed by the disk controller, except

it saves the future latency of transferring data from the disk controller memory into

motherboard main memory.

 The caching system and asynchronous writes speed up disk writes considerably, because

the disk subsystem can schedule physical writes to the disk to minimize head movement

and disk seek times. (See Chapter 12.) Reads, on the other hand, must be done more

synchronously in spite of the caching system, with the result that disk writes can counter-

intuitively be much faster on average than disk reads.

191

Mass-Storage Structure

References:

1. Abraham Silberschatz, Greg Gagne, and Peter Baer Galvin, "Operating System Concepts, Ninth Edition ",

Chapter 10 (Was chapter 12)

10.1 Overview of Mass-Storage Structure

10.1.1 Magnetic Disks

 Traditional magnetic disks have the following basic structure:

o One or more platters in the form of disks covered with magnetic media. Hard disk platters are

made of rigid metal, while "floppy" disks are made of more flexible plastic.

o Each platter has two working surfaces. Older hard disk drives would sometimes not use the very

top or bottom surface of a stack of platters, as these surfaces were more susceptible to potential

damage.

o Each working surface is divided into a number of concentric rings called tracks. The collection of

all tracks that are the same distance from the edge of the platter, (i.e. all tracks immediately above

one another in the following diagram) is called a cylinder.

o Each track is further divided into sectors, traditionally containing 512 bytes of data each, although

some modern disks occasionally use larger sector sizes. (Sectors also include a header and a

trailer, including checksum information among other things. Larger sector sizes reduce the fraction

of the disk consumed by headers and trailers, but increase internal fragmentation and the amount

of disk that must be marked bad in the case of errors.)

o The data on a hard drive is read by read-write heads. The standard configuration (shown below)

uses one head per surface, each on a separate arm, and controlled by a common arm assembly

which moves all heads simultaneously from one cylinder to another. (Other configurations,

including independent read-write heads, may speed up disk access, but involve serious technical

difficulties.)

o The storage capacity of a traditional disk drive is equal to the number of heads (i.e. the number of

working surfaces), times the number of tracks per surface, times the number of sectors per track,

times the number of bytes per sector. A particular physical block of data is specified by providing

the head-sector-cylinder number at which it is located.

Figure 10.1 - Moving-head disk mechanism.

192

 In operation the disk rotates at high speed, such as 7200 rpm (120 revolutions per second.) The rate at

which data can be transferred from the disk to the computer is composed of several steps:

o The positioning time, a.k.a. the seek time or random access time is the time required to move the

heads from one cylinder to another, and for the heads to settle down after the move. This is

typically the slowest step in the process and the predominant bottleneck to overall transfer rates.

o The rotational latency is the amount of time required for the desired sector to rotate around and

come under the read-write head.This can range anywhere from zero to one full revolution, and on

the average will equal one-half revolution. This is another physical step and is usually the second

slowest step behind seek time. (For a disk rotating at 7200 rpm, the average rotational latency

would be 1/2 revolution / 120 revolutions per second, or just over 4 milliseconds, a long time by

computer standards.

o The transfer rate, which is the time required to move the data electronically from the disk to the

computer. (Some authors may also use the term transfer rate to refer to the overall transfer rate,

including seek time and rotational latency as well as the electronic data transfer rate.)

 Disk heads "fly" over the surface on a very thin cushion of air. If they should accidentally contact the disk,

then a head crash occurs, which may or may not permanently damage the disk or even destroy it

completely. For this reason it is normal to park the disk heads when turning a computer off, which means

to move the heads off the disk or to an area of the disk where there is no data stored.

 Floppy disks are normally removable. Hard drives can also be removable, and some are even hot-

swappable, meaning they can be removed while the computer is running, and a new hard drive inserted in

their place.

 Disk drives are connected to the computer via a cable known as the I/O Bus. Some of the common

interface formats include Enhanced Integrated Drive Electronics, EIDE; Advanced Technology

Attachment, ATA; Serial ATA, SATA, Universal Serial Bus, USB; Fiber Channel, FC, and Small

Computer Systems Interface, SCSI.

 The host controller is at the computer end of the I/O bus, and the disk controller is built into the disk

itself. The CPU issues commands to the host controller via I/O ports. Data is transferred between the

magnetic surface and onboard cache by the disk controller, and then the data is transferred from that cache

to the host controller and the motherboard memory at electronic speeds.

10.1.2 Solid-State Disks - New

 As technologies improve and economics change, old technologies are often used in different ways. One

example of this is the increasing used of solid state disks, or SSDs.

 SSDs use memory technology as a small fast hard disk. Specific implementations may use either flash

memory or DRAM chips protected by a battery to sustain the information through power cycles.

 Because SSDs have no moving parts they are much faster than traditional hard drives, and certain

problems such as the scheduling of disk accesses simply do not apply.

 However SSDs also have their weaknesses: They are more expensive than hard drives, generally not as

large, and may have shorter life spans.

 SSDs are especially useful as a high-speed cache of hard-disk information that must be accessed quickly.

One example is to store filesystem meta-data, e.g. directory and inode information, that must be accessed

quickly and often. Another variation is a boot disk containing the OS and some application executables,

but no vital user data. SSDs are also used in laptops to make them smaller, faster, and lighter.

 Because SSDs are so much faster than traditional hard disks, the throughput of the bus can become a

limiting factor, causing some SSDs to be connected directly to the system PCI bus for example.

10.1.3 Magnetic Tapes - was 12.1.2

 Magnetic tapes were once used for common secondary storage before the days of hard disk drives, but

today are used primarily for backups.

 Accessing a particular spot on a magnetic tape can be slow, but once reading or writing commences,

access speeds are comparable to disk drives.

 Capacities of tape drives can range from 20 to 200 GB, and compression can double that capacity.

10.2 Disk Structure

193

 The traditional head-sector-cylinder, HSC numbers are mapped to linear block addresses by numbering the

first sector on the first head on the outermost track as sector 0. Numbering proceeds with the rest of the

sectors on that same track, and then the rest of the tracks on the same cylinder before proceeding through

the rest of the cylinders to the center of the disk. In modern practice these linear block addresses are used

in place of the HSC numbers for a variety of reasons:

1. The linear length of tracks near the outer edge of the disk is much longer than for those tracks

located near the center, and therefore it is possible to squeeze many more sectors onto outer tracks

than onto inner ones.

2. All disks have some bad sectors, and therefore disks maintain a few spare sectors that can be used

in place of the bad ones. The mapping of spare sectors to bad sectors in managed internally to the

disk controller.

3. Modern hard drives can have thousands of cylinders, and hundreds of sectors per track on their

outermost tracks. These numbers exceed the range of HSC numbers for many (older) operating

systems, and therefore disks can be configured for any convenient combination of HSC values that

falls within the total number of sectors physically on the drive.

 There is a limit to how closely packed individual bits can be placed on a physical media, but that limit is

growing increasingly more packed as technological advances are made.

 Modern disks pack many more sectors into outer cylinders than inner ones, using one of two approaches:

o With Constant Linear Velocity, CLV, the density of bits is uniform from cylinder to cylinder.

Because there are more sectors in outer cylinders, the disk spins slower when reading those

cylinders, causing the rate of bits passing under the read-write head to remain constant. This is the

approach used by modern CDs and DVDs.

o With Constant Angular Velocity, CAV, the disk rotates at a constant angular speed, with the bit

density decreasing on outer cylinders. (These disks would have a constant number of sectors per

track on all cylinders.)

10.3 Disk Attachment

Disk drives can be attached either directly to a particular host (a local disk) or to a network.

10.3.1 Host-Attached Storage

 Local disks are accessed through I/O Ports as described earlier.

 The most common interfaces are IDE or ATA, each of which allow up to two drives per host controller.

 SATA is similar with simpler cabling.

 High end workstations or other systems in need of larger number of disks typically use SCSI disks:

o The SCSI standard supports up to 16 targets on each SCSI bus, one of which is generally the host

adapter and the other 15 of which can be disk or tape drives.

o A SCSI target is usually a single drive, but the standard also supports up to 8 units within each

target. These would generally be used for accessing individual disks within a RAID array. (See

below.)

o The SCSI standard also supports multiple host adapters in a single computer, i.e. multiple SCSI

busses.

o Modern advancements in SCSI include "fast" and "wide" versions, as well as SCSI-2.

o SCSI cables may be either 50 or 68 conductors. SCSI devices may be external as well as internal.

o See wikipedia for more information on the SCSI interface.

 FC is a high-speed serial architecture that can operate over optical fiber or four-conductor copper wires,

and has two variants:

o A large switched fabric having a 24-bit address space. This variant allows for multiple devices and

multiple hosts to interconnect, forming the basis for the storage-area networks, SANs, to be

discussed in a future section.

o The arbitrated loop, FC-AL, that can address up to 126 devices (drives and controllers.)

http://en.wikipedia.org/wiki/SCSI

194

10.3.2 Network-Attached Storage

 Network attached storage connects storage devices to computers using a remote procedure call, RPC,

interface, typically with something like NFS filesystem mounts. This is convenient for allowing several

computers in a group common access and naming conventions for shared storage.

 NAS can be implemented using SCSI cabling, or ISCSI uses Internet protocols and standard network

connections, allowing long-distance remote access to shared files.

 NAS allows computers to easily share data storage, but tends to be less efficient than standard host-

attached storage.

Figure 10.2 - Network-attached storage.

10.3.3 Storage-Area Network

 A Storage-Area Network, SAN, connects computers and storage devices in a network, using storage

protocols instead of network protocols.

 One advantage of this is that storage access does not tie up regular networking bandwidth.

 SAN is very flexible and dynamic, allowing hosts and devices to attach and detach on the fly.

 SAN is also controllable, allowing restricted access to certain hosts and devices.

Figure 10.3 - Storage-area network.

10.4 Disk Scheduling

 As mentioned earlier, disk transfer speeds are limited primarily by seek times and rotational latency.

When multiple requests are to be processed there is also some inherent delay in waiting for other requests

to be processed.

 Bandwidth is measured by the amount of data transferred divided by the total amount of time from the first

request being made to the last transfer being completed, (for a series of disk requests.)

 Both bandwidth and access time can be improved by processing requests in a good order.

195

 Disk requests include the disk address, memory address, number of sectors to transfer, and whether the

request is for reading or writing.

10.4.1 FCFS Scheduling

 First-Come First-Serve is simple and intrinsically fair, but not very efficient. Consider in the following

sequence the wild swing from cylinder 122 to 14 and then back to 124:

Figure 10.4 - FCFS disk scheduling.

10.4.2 SSTF Scheduling

 Shortest Seek Time First scheduling is more efficient, but may lead to starvation if a constant stream of

requests arrives for the same general area of the disk.

 SSTF reduces the total head movement to 236 cylinders, down from 640 required for the same set of

requests under FCFS. Note, however that the distance could be reduced still further to 208 by starting with

37 and then 14 first before processing the rest of the requests.

Figure 10.5 - SSTF disk scheduling.

196

10.4.3 SCAN Scheduling

 The SCAN algorithm, a.k.a. the elevator algorithm moves back and forth from one end of the disk to the

other, similarly to an elevator processing requests in a tall building.

Figure 10.6 - SCAN disk scheduling.

 Under the SCAN algorithm, If a request arrives just ahead of the moving head then it will be processed

right away, but if it arrives just after the head has passed, then it will have to wait for the head to pass

going the other way on the return trip. This leads to a fairly wide variation in access times which can be

improved upon.

 Consider, for example, when the head reaches the high end of the disk: Requests with high cylinder

numbers just missed the passing head, which means they are all fairly recent requests, whereas requests

with low numbers may have been waiting for a much longer time. Making the return scan from high to low

then ends up accessing recent requests first and making older requests wait that much longer.

10.4.4 C-SCAN Scheduling

 The Circular-SCAN algorithm improves upon SCAN by treating all requests in a circular queue fashion -

Once the head reaches the end of the disk, it returns to the other end without processing any requests, and

then starts again from the beginning of the disk:

Figure 10.7 - C-SCAN disk scheduling.

197

12.4.5 LOOK Scheduling

 LOOK scheduling improves upon SCAN by looking ahead at the queue of pending requests, and not

moving the heads any farther towards the end of the disk than is necessary. The following diagram

illustrates the circular form of LOOK:

Figure 10.8 - C-LOOK disk scheduling.

10.4.6 Selection of a Disk-Scheduling Algorithm

 With very low loads all algorithms are equal, since there will normally only be one request to process at a

time.

 For slightly larger loads, SSTF offers better performance than FCFS, but may lead to starvation when

loads become heavy enough.

 For busier systems, SCAN and LOOK algorithms eliminate starvation problems.

 The actual optimal algorithm may be something even more complex than those discussed here, but the

incremental improvements are generally not worth the additional overhead.

 Some improvement to overall filesystem access times can be made by intelligent placement of directory

and/or inode information. If those structures are placed in the middle of the disk instead of at the beginning

of the disk, then the maximum distance from those structures to data blocks is reduced to only one-half of

the disk size. If those structures can be further distributed and furthermore have their data blocks stored as

close as possible to the corresponding directory structures, then that reduces still further the overall time to

find the disk block numbers and then access the corresponding data blocks.

 On modern disks the rotational latency can be almost as significant as the seek time, however it is not

within the OSes control to account for that, because modern disks do not reveal their internal sector

mapping schemes, (particularly when bad blocks have been remapped to spare sectors.)

o Some disk manufacturers provide for disk scheduling algorithms directly on their disk controllers,

(which do know the actual geometry of the disk as well as any remapping), so that if a series of

requests are sent from the computer to the controller then those requests can be processed in an

optimal order.

o Unfortunately there are some considerations that the OS must take into account that are beyond the

abilities of the on-board disk-scheduling algorithms, such as priorities of some requests over

others, or the need to process certain requests in a particular order. For this reason OSes may elect

to spoon-feed requests to the disk controller one at a time in certain situations.

10.5 Disk Management

105.1 Disk Formatting

 Before a disk can be used, it has to be low-level formatted, which means laying down all of the headers

and trailers marking the beginning and ends of each sector. Included in the header and trailer are the linear

198

sector numbers, and error-correcting codes, ECC, which allow damaged sectors to not only be detected,

but in many cases for the damaged data to be recovered (depending on the extent of the damage.) Sector

sizes are traditionally 512 bytes, but may be larger, particularly in larger drives.

 ECC calculation is performed with every disk read or write, and if damage is detected but the data is

recoverable, then a soft error has occurred. Soft errors are generally handled by the on-board disk

controller, and never seen by the OS. (See below.)

 Once the disk is low-level formatted, the next step is to partition the drive into one or more separate

partitions. This step must be completed even if the disk is to be used as a single large partition, so that the

partition table can be written to the beginning of the disk.

 After partitioning, then the filesystems must be logically formatted, which involves laying down the

master directory information (FAT table or inode structure), initializing free lists, and creating at least the

root directory of the filesystem. (Disk partitions which are to be used as raw devices are not logically

formatted. This saves the overhead and disk space of the filesystem structure, but requires that the

application program manage its own disk storage requirements.)

10.5.2 Boot Block

 Computer ROM contains a bootstrap program (OS independent) with just enough code to find the first

sector on the first hard drive on the first controller, load that sector into memory, and transfer control over

to it. (The ROM bootstrap program may look in floppy and/or CD drives before accessing the hard drive,

and is smart enough to recognize whether it has found valid boot code or not.)

 The first sector on the hard drive is known as the Master Boot Record, MBR, and contains a very small

amount of code in addition to the partition table. The partition table documents how the disk is partitioned

into logical disks, and indicates specifically which partition is the active or boot partition.

 The boot program then looks to the active partition to find an operating system, possibly loading up a

slightly larger / more advanced boot program along the way.

 In a dual-boot (or larger multi-boot) system, the user may be given a choice of which operating system to

boot, with a default action to be taken in the event of no response within some time frame.

 Once the kernel is found by the boot program, it is loaded into memory and then control is transferred over

to the OS. The kernel will normally continue the boot process by initializing all important kernel data

structures, launching important system services (e.g. network daemons, sched, init, etc.), and finally

providing one or more login prompts. Boot options at this stage may include single-user a.k.a.

maintenance or safe modes, in which very few system services are started - These modes are designed for

system administrators to repair problems or otherwise maintain the system.

Figure 10.9 - Booting from disk in Windows 2000.

10.5.3 Bad Blocks

 No disk can be manufactured to 100% perfection, and all physical objects wear out over time. For these

reasons all disks are shipped with a few bad blocks, and additional blocks can be expected to go bad

slowly over time. If a large number of blocks go bad then the entire disk will need to be replaced, but a few

here and there can be handled through other means.

 In the old days, bad blocks had to be checked for manually. Formatting of the disk or running certain disk-

analysis tools would identify bad blocks, and attempt to read the data off of them one last time through

199

repeated tries. Then the bad blocks would be mapped out and taken out of future service. Sometimes the

data could be recovered, and sometimes it was lost forever. (Disk analysis tools could be either destructive

or non-destructive.)

 Modern disk controllers make much better use of the error-correcting codes, so that bad blocks can be

detected earlier and the data usually recovered. (Recall that blocks are tested with every write as well as

with every read, so often errors can be detected before the write operation is complete, and the data simply

written to a different sector instead.)

 Note that re-mapping of sectors from their normal linear progression can throw off the disk scheduling

optimization of the OS, especially if the replacement sector is physically far away from the sector it is

replacing. For this reason most disks normally keep a few spare sectors on each cylinder, as well as at least

one spare cylinder. Whenever possible a bad sector will be mapped to another sector on the same cylinder,

or at least a cylinder as close as possible. Sector slipping may also be performed, in which all sectors

between the bad sector and the replacement sector are moved down by one, so that the linear progression

of sector numbers can be maintained.

 If the data on a bad block cannot be recovered, then a hard error has occurred., which requires replacing

the file(s) from backups, or rebuilding them from scratch.

10.6 Swap-Space Management

 Modern systems typically swap out pages as needed, rather than swapping out entire processes. Hence the

swapping system is part of the virtual memory management system.

 Managing swap space is obviously an important task for modern OSes.

10.6.1 Swap-Space Use

 The amount of swap space needed by an OS varies greatly according to how it is used. Some systems

require an amount equal to physical RAM; some want a multiple of that; some want an amount equal to

the amount by which virtual memory exceeds physical RAM, and some systems use little or none at all!

 Some systems support multiple swap spaces on separate disks in order to speed up the virtual memory

system.

10.6.2 Swap-Space Location

Swap space can be physically located in one of two locations:

 As a large file which is part of the regular filesystem. This is easy to implement, but inefficient. Not only

must the swap space be accessed through the directory system, the file is also subject to fragmentation

issues. Caching the block location helps in finding the physical blocks, but that is not a complete fix.

 As a raw partition, possibly on a separate or little-used disk. This allows the OS more control over swap

space management, which is usually faster and more efficient. Fragmentation of swap space is generally

not a big issue, as the space is re-initialized every time the system is rebooted. The downside of keeping

swap space on a raw partition is that it can only be grown by repartitioning the hard drive.

12.6.3 Swap-Space Management: An Example

 Historically OSes swapped out entire processes as needed. Modern systems swap out only individual

pages, and only as needed. (For example process code blocks and other blocks that have not been changed

since they were originally loaded are normally just freed from the virtual memory system rather than

copying them to swap space, because it is faster to go find them again in the filesystem and read them back

in from there than to write them out to swap space and then read them back.)

 In the mapping system shown below for Linux systems, a map of swap space is kept in memory, where

each entry corresponds to a 4K block in the swap space. Zeros indicate free slots and non-zeros refer to

how many processes have a mapping to that particular block (>1 for shared pages only.)

200

Figure 10.10 - The data structures for swapping on Linux systems.

10.7 RAID Structure

 The general idea behind RAID is to employ a group of hard drives together with some form of duplication,

either to increase reliability or to speed up operations, (or sometimes both.)

 RAID originally stood for Redundant Array of Inexpensive Disks, and was designed to use a bunch of

cheap small disks in place of one or two larger more expensive ones. Today RAID systems employ large

possibly expensive disks as their components, switching the definition to Independent disks.

10.7.1 Improvement of Reliability via Redundancy

 The more disks a system has, the greater the likelihood that one of them will go bad at any given time.

Hence increasing disks on a system actually decreases the Mean Time To Failure, MTTF of the system.

 If, however, the same data was copied onto multiple disks, then the data would not be lost unless both (or

all) copies of the data were damaged simultaneously, which is a MUCH lower probability than for a

single disk going bad. More specifically, the second disk would have to go bad before the first disk was

repaired, which brings the Mean Time To Repair into play. For example if two disks were involved, each

with a MTTF of 100,000 hours and a MTTR of 10 hours, then the Mean Time to Data Loss would be 500

* 10^6 hours, or 57,000 years!

 This is the basic idea behind disk mirroring, in which a system contains identical data on two or more

disks.

o Note that a power failure during a write operation could cause both disks to contain corrupt data, if

both disks were writing simultaneously at the time of the power failure. One solution is to write to

the two disks in series, so that they will not both become corrupted (at least not in the same way)

by a power failure. And alternate solution involves non-volatile RAM as a write cache, which is

not lost in the event of a power failure and which is protected by error-correcting codes.

10.7.2 Improvement in Performance via Parallelism

 There is also a performance benefit to mirroring, particularly with respect to reads. Since every block of

data is duplicated on multiple disks, read operations can be satisfied from any available copy, and multiple

disks can be reading different data blocks simultaneously in parallel. (Writes could possibly be sped up as

well through careful scheduling algorithms, but it would be complicated in practice.)

 Another way of improving disk access time is with striping, which basically means spreading data out

across multiple disks that can be accessed simultaneously.

o With bit-level striping the bits of each byte are striped across multiple disks. For example if 8

disks were involved, then each 8-bit byte would be read in parallel by 8 heads on separate disks. A

single disk read would access 8 * 512 bytes = 4K worth of data in the time normally required to

read 512 bytes. Similarly if 4 disks were involved, then two bits of each byte could be stored on

each disk, for 2K worth of disk access per read or write operation.

o Block-level striping spreads a filesystem across multiple disks on a block-by-block basis, so if

block N were located on disk 0, then block N + 1 would be on disk 1, and so on. This is

particularly useful when filesystems are accessed in clusters of physical blocks. Other striping

possibilities exist, with block-level striping being the most common.

201

10.7.3 RAID Levels

 Mirroring provides reliability but is expensive; Striping improves performance, but does not improve

reliability. Accordingly there are a number of different schemes that combine the principals of mirroring

and striping in different ways, in order to balance reliability versus performance versus cost. These are

described by different RAID levels, as follows: (In the diagram that follows, "C" indicates a copy, and "P"

indicates parity, i.e. checksum bits.)

1. Raid Level 0 - This level includes striping only, with no mirroring.

2. Raid Level 1 - This level includes mirroring only, no striping.

3. Raid Level 2 - This level stores error-correcting codes on additional disks, allowing for any

damaged data to be reconstructed by subtraction from the remaining undamaged data. Note that

this scheme requires only three extra disks to protect 4 disks worth of data, as opposed to full

mirroring. (The number of disks required is a function of the error-correcting algorithms, and the

means by which the particular bad bit(s) is(are) identified.)

4. Raid Level 3 - This level is similar to level 2, except that it takes advantage of the fact that each

disk is still doing its own error-detection, so that when an error occurs, there is no question about

which disk in the array has the bad data. As a result a single parity bit is all that is needed to

recover the lost data from an array of disks. Level 3 also includes striping, which improves

performance. The downside with the parity approach is that every disk must take part in every disk

access, and the parity bits must be constantly calculated and checked, reducing performance.

Hardware-level parity calculations and NVRAM cache can help with both of those issues. In

practice level 3 is greatly preferred over level 2.

5. Raid Level 4 - This level is similar to level 3, employing block-level striping instead of bit-level

striping. The benefits are that multiple blocks can be read independently, and changes to a block

only require writing two blocks (data and parity) rather than involving all disks. Note that new

disks can be added seamlessly to the system provided they are initialized to all zeros, as this does

not affect the parity results.

6. Raid Level 5 - This level is similar to level 4, except the parity blocks are distributed over all

disks, thereby more evenly balancing the load on the system. For any given block on the disk(s),

one of the disks will hold the parity information for that block and the other N-1 disks will hold

the data. Note that the same disk cannot hold both data and parity for the same block, as both

would be lost in the event of a disk crash.

7. Raid Level 6 - This level extends raid level 5 by storing multiple bits of error-recovery codes, (

such as the Reed-Solomon codes), for each bit position of data, rather than a single parity bit. In

the example shown below 2 bits of ECC are stored for every 4 bits of data, allowing data recovery

in the face of up to two simultaneous disk failures. Note that this still involves only 50% increase

in storage needs, as opposed to 100% for simple mirroring which could only tolerate a single disk

failure.

http://en.wikipedia.org/wiki/Reed-Solomon_coding

202

Figure 10.11 - RAID levels.

 There are also two RAID levels which combine RAID levels 0 and 1 (striping and mirroring) in different

combinations, designed to provide both performance and reliability at the expense of increased cost.

o RAID level 0 + 1 disks are first striped, and then the striped disks mirrored to another set. This

level generally provides better performance than RAID level 5.

o RAID level 1 + 0 mirrors disks in pairs, and then stripes the mirrored pairs. The storage capacity,

performance, etc. are all the same, but there is an advantage to this approach in the event of

multiple disk failures, as illustrated below:.

 In diagram (a) below, the 8 disks have been divided into two sets of four, each of which is

striped, and then one stripe set is used to mirror the other set.

 If a single disk fails, it wipes out the entire stripe set, but the system can keep on

functioning using the remaining set.

 However if a second disk from the other stripe set now fails, then the entire

system is lost, as a result of two disk failures.

 In diagram (b), the same 8 disks are divided into four sets of two, each of which is

mirrored, and then the file system is striped across the four sets of mirrored disks.

 If a single disk fails, then that mirror set is reduced to a single disk, but the system

rolls on, and the other three mirror sets continue mirroring.

 Now if a second disk fails, (that is not the mirror of the already failed disk), then

another one of the mirror sets is reduced to a single disk, but the system can

continue without data loss.

 In fact the second arrangement could handle as many as four simultaneously failed

disks, as long as no two of them were from the same mirror pair.

o See the wikipedia article on nested raid levels for more information.

http://en.wikipedia.org/wiki/RAID_10

203

o Here's a better explanation:

http://www.storagereview.com/guide2000/ref/hdd/perf/raid/levels/multXY.html

Figure 10.12 - RAID 0 + 1 and 1 + 0

10.7.4 Selecting a RAID Level

 Trade-offs in selecting the optimal RAID level for a particular application include cost, volume of data,

need for reliability, need for performance, and rebuild time, the latter of which can affect the likelihood

that a second disk will fail while the first failed disk is being rebuilt.

 Other decisions include how many disks are involved in a RAID set and how many disks to protect with a

single parity bit. More disks in the set increases performance but increases cost. Protecting more disks per

parity bit saves cost, but increases the likelihood that a second disk will fail before the first bad disk is

repaired.

10.7.5 Extensions

 RAID concepts have been extended to tape drives (e.g. striping tapes for faster backups or parity checking

tapes for reliability), and for broadcasting of data.

10.7.6 Problems with RAID

 RAID protects against physical errors, but not against any number of bugs or other errors that could write

erroneous data.

 ZFS adds an extra level of protection by including data block checksums in all inodes along with the

pointers to the data blocks. If data are mirrored and one copy has the correct checksum and the other does

not, then the data with the bad checksum will be replaced with a copy of the data with the good checksum.

This increases reliability greatly over RAID alone, at a cost of a performance hit that is acceptable because

ZFS is so fast to begin with.

http://www.storagereview.com/guide2000/ref/hdd/perf/raid/levels/multXY.html

204

Figure 10.13 - ZFS checksums all metadata and data.

 Another problem with traditional filesystems is that the sizes are fixed, and relatively difficult to change.

Where RAID sets are involved it becomes even harder to adjust filesystem sizes, because a filesystem

cannot span across multiple filesystems.

 ZFS solves these problems by pooling RAID sets, and by dynamically allocating space to filesystems as

needed. Filesystem sizes can be limited by quotas, and space can also be reserved to guarantee that a

filesystem will be able to grow later, but these parameters can be changed at any time by the filesystem's

owner. Otherwise filesystems grow and shrink dynamically as needed.

Figure 10.14 - (a) Traditional volumes and file systems. (b) a ZFS pool and file systems.

10.8 Stable-Storage Implementation (Optional)

 The concept of stable storage (first presented in chapter 6) involves a storage medium in which data is

never lost, even in the face of equipment failure in the middle of a write operation.

 To implement this requires two (or more) copies of the data, with separate failure modes.

 An attempted disk write results in one of three possible outcomes:

1. The data is successfully and completely written.

2. The data is partially written, but not completely. The last block written may be garbled.

3. No writing takes place at all.

205

 Whenever an equipment failure occurs during a write, the system must detect it, and return the system

back to a consistent state. To do this requires two physical blocks for every logical block, and the

following procedure:

1. Write the data to the first physical block.

2. After step 1 had completed, then write the data to the second physical block.

3. Declare the operation complete only after both physical writes have completed successfully.

 During recovery the pair of blocks is examined.

o If both blocks are identical and there is no sign of damage, then no further action is necessary.

o If one block contains a detectable error but the other does not, then the damaged block is replaced

with the good copy. (This will either undo the operation or complete the operation, depending on

which block is damaged and which is undamaged.)

o If neither block shows damage but the data in the blocks differ, then replace the data in the first

block with the data in the second block. (Undo the operation.)

 Because the sequence of operations described above is slow, stable storage usually includes NVRAM as a

cache, and declares a write operation complete once it has been written to the NVRAM.

10.9 Summary

Was 12.9 Tertiary-Storage Structure - Optional, Omitted from Ninth Edition

 Primary storage refers to computer memory chips; Secondary storage refers to fixed-disk storage systems (

hard drives); And Tertiary Storage refers to removable media, such as tape drives, CDs, DVDs, and to a

lesser extend floppies, thumb drives, and other detachable devices.

 Tertiary storage is typically characterized by large capacity, low cost per MB, and slow access times,

although there are exceptions in any of these categories.

 Tertiary storage is typically used for backups and for long-term archival storage of completed work.

Another common use for tertiary storage is to swap large little-used files (or groups of files) off of the

hard drive, and then swap them back in as needed in a fashion similar to secondary storage providing swap

space for primary storage. (Review The Paging Game, note 5).

12.9.1 Tertiary-Storage Devices

12.9.1.1 Removable Disks

 Removable magnetic disks (e.g. floppies) can be nearly as fast as hard drives, but are at greater risk for

damage due to scratches. Variations of removable magnetic disks up to a GB or more in capacity have

been developed. (Hot-swappable hard drives?)

 A magneto-optical disk uses a magnetic disk covered in a clear plastic coating that protects the surface.

o The heads sit a considerable distance away from the magnetic surface, and as a result do not have

enough magnetic strength to switch bits at normal room temperature.

o For writing, a laser is used to heat up a specific spot on the disk, to a temperature at which the

weak magnetic field of the write head is able to flip the bits.

o For reading, a laser is shined at the disk, and the Kerr effect causes the polarization of the light to

become rotated either clockwise or counter-clockwise depending on the orientation of the

magnetic field.

 Optical disks do not use magnetism at all, but instead use special materials that can be altered (by lasers)

to have relatively light or dark spots.

o For example the phase-change disk has a material that can be frozen into either a crystalline or an

amorphous state, the latter of which is less transparent and reflects less light when a laser is

bounced off a reflective surface under the material.

 Three powers of lasers are used with phase-change disks: (1) a low power laser is used to

read the disk, without effecting the materials. (2) A medium power erases the disk, by

melting and re-freezing the medium into a crystalline state, and (3) a high power writes to

the disk by melting the medium and re-freezing it into the amorphous state.

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/ThePagingGame.html

206

 The most common examples of these disks are re-writable CD-RWs and DVD-RWs.

 An alternative to the disks described above are Write-Once Read-Many, WORM drives.

o The original version of WORM drives involved a thin layer of aluminum sandwiched between two

protective layers of glass or plastic.

 Holes were burned in the aluminum to write bits.

 Because the holes could not be filled back in, there was no way to re-write to the disk. (

Although data could be erased by burning more holes.)

o WORM drives have important legal ramifications for data that must be stored for a very long time

and must be provable in court as unaltered since it was originally written. (Such as long-term

storage of medical records.)

o Modern CD-R and DVD-R disks are examples of WORM drives that use organic polymer inks

instead of an aluminum layer.

 Read-only disks are similar to WORM disks, except the bits are pressed onto the disk at the factory, rather

than being burned on one by one. (See http://en.wikipedia.org/wiki/CD_manufacturing#Premastering for

more information on CD manufacturing techniques.)

12.9.1.2 Tapes

 Tape drives typically cost more than disk drives, but the cost per MB of the tapes themselves is lower.

 Tapes are typically used today for backups, and for enormous volumes of data stored by certain scientific

establishments. (E.g. NASA's archive of space probe and satellite imagery, which is currently being

downloaded from numerous sources faster than anyone can actually look at it.)

 Robotic tape changers move tapes from drives to archival tape libraries upon demand.

 (Never underestimate the bandwidth of a station wagon full of tapes rolling down the highway!)

12.9.1.3 Future Technology

 Solid State Disks, SSDs, are becoming more and more popular.

 Holographic storage uses laser light to store images in a 3-D structure, and the entire data structure can be

transferred in a single flash of laser light.

 Micro-Electronic Mechanical Systems, MEMS, employs the technology used for computer chip

fabrication to create VERY tiny little machines. One example packs 10,000 read-write heads within a

square centimeter of space, and as media are passed over it, all 10,000 heads can read data in parallel.

12.9.2 Operating-System Support

 The OS must provide support for tertiary storage as removable media, including the support to transfer

data between different systems.

12.9.2.1 Application Interface

 File systems are typically not stored on tapes. (It might be technically possible, but it is impractical.)

 Tapes are also not low-level formatted, and do not use fixed-length blocks. Rather data is written to tapes

in variable length blocks as needed.

 Tapes are normally accessed as raw devices, requiring each application to determine how the data is to be

stored and read back. Issues such as header contents and ASCII versus binary encoding (and byte-ordering

) are generally application specific.

 Basic operations supported for tapes include locate(), read(), write(), and read_position().

 (Because of variable length writes), writing to a tape erases all data that follows that point on the tape.

o Writing to a tape places the End of Tape (EOT) marker at the end of the data written.

o It is not possible to locate() to any spot past the EOT marker.

http://en.wikipedia.org/wiki/CD_manufacturing#Premastering

207

12.9.2.2 File Naming

 File naming conventions for removable media are not entirely uniquely specific, nor are they necessarily

consistent between different systems. (Two removable disks may contain files with the same name, and

there is no clear way for the naming system to distinguish between them.)

 Fortunately music CDs have a common format, readable by all systems. Data CDs and DVDs have only a

few format choices, making it easy for a system to support all known formats.

12.9.2.3 Hierarchical Storage Management

 Hierarchical storage involves extending file systems out onto tertiary storage, swapping files from hard

drives to tapes in much the same manner as data blocks are swapped from memory to hard drives.

 A placeholder is generally left on the hard drive, storing information about the particular tape (or other

removable media) on which the file has been swapped out to.

 A robotic system transfers data to and from tertiary storage as needed, generally automatically upon

demand of the file(s) involved.

12.9.3 Performance Issues

12.9.3.1 Speed

 Sustained Bandwidth is the rate of data transfer during a large file transfer, once the proper tape is loaded

and the file located.

 Effective Bandwidth is the effective overall rate of data transfer, including any overhead necessary to load

the proper tape and find the file on the tape.

 Access Latency is all of the accumulated waiting time before a file can be actually read from tape. This

includes the time it takes to find the file on the tape, the time to load the tape from the tape library, and the

time spent waiting in the queue for the tape drive to become available.

 Clearly tertiary storage access is much slower than secondary access, although removable disks (e.g. a CD

jukebox) have somewhat faster access than a tape library.

12.9.3.1 Reliability

 Fixed hard drives are generally more reliable than removable drives, because they are less susceptible to

the environment.

 Optical disks are generally more reliable than magnetic media.

 A fixed hard drive crash can destroy all data, whereas an optical drive or tape drive failure will often not

harm the data media, (and certainly can't damage any media not in the drive at the time of the failure.)

 Tape drives are mechanical devices, and can wear out tapes over time, (as the tape head is generally in

much closer physical contact with the tape than disk heads are with platters.)

o Some drives may only be able to read tapes a few times whereas other drives may be able to re-use

the same tapes millions of times.

o Backup tapes should be read after writing, to verify that the backup tape is readable. (

Unfortunately that may have been the LAST time that particular tape was readable, and the only

way to be sure is to read it again, . . .)

o Long-term tape storage can cause degradation, as magnetic fields "drift" from one layer of tape to

the adjacent layers. Periodic fast-forwarding and rewinding of tapes can help, by changing which

section of tape lays against which other layers.

12.9.3.3 Cost

 The cost per megabyte for removable media is its strongest selling feature, particularly as the amount of

storage involved (i.e. the number of tapes, CDs, etc) increases.

 However the cost per megabyte for hard drives has dropped more rapidly over the years than the cost of

removable media, such that the currently most cost-effective backup solution for many systems is simply

an additional (external) hard drive.

208

 (One good use for old unwanted PCs is to put them on a network as a backup server and/or print server.

The downside to this backup solution is that the backups are stored on-site with the original data, and a

fire, flood, or burglary could wipe out both the original data and the backups.)

Old Figure 12.15 - Price per megabyte of DRAM, from 1981 to 2008

Old Figure 12.16 - Price per megabyte of magnetic hard disk, from 1981 to 2008.

209

Old Figure 12.17 - Price per megabyte of a tape drive, from 1984 to 2008.

210

I/O Systems

References:

1. Abraham Silberschatz, Greg Gagne, and Peter Baer Galvin, "Operating System Concepts, Eighth

Edition ", Chapter 13

13.1 Overview

 Management of I/O devices is a very important part of the operating system - so important and so

varied that entire I/O subsystems are devoted to its operation. (Consider the range of devices on a

modern computer, from mice, keyboards, disk drives, display adapters, USB devices, network

connections, audio I/O, printers, special devices for the handicapped, and many special-purpose

peripherals.)

 I/O Subsystems must contend with two (conflicting?) trends: (1) The gravitation towards

standard interfaces for a wide range of devices, making it easier to add newly developed devices

to existing systems, and (2) the development of entirely new types of devices, for which the

existing standard interfaces are not always easy to apply.

 Device drivers are modules that can be plugged into an OS to handle a particular device or

category of similar devices.

13.2 I/O Hardware

 I/O devices can be roughly categorized as storage, communications, user-interface, and other

 Devices communicate with the computer via signals sent over wires or through the air.

 Devices connect with the computer via ports, e.g. a serial or parallel port.

 A common set of wires connecting multiple devices is termed a bus.

o Buses include rigid protocols for the types of messages that can be sent across the bus and

the procedures for resolving contention issues.

o Figure 13.1 below illustrates three of the four bus types commonly found in a modern PC:

1. The PCI bus connects high-speed high-bandwidth devices to the memory

subsystem (and the CPU.)

2. The expansion bus connects slower low-bandwidth devices, which typically

deliver data one character at a time (with buffering.)

3. The SCSI bus connects a number of SCSI devices to a common SCSI controller.

4. A daisy-chain bus, (not shown) is when a string of devices is connected to each

other like beads on a chain, and only one of the devices is directly connected to the

host.

211

Figure 13.1 - A typical PC bus structure.

 One way of communicating with devices is through registers associated with each port. Registers

may be one to four bytes in size, and may typically include (a subset of) the following four:

1. The data-in register is read by the host to get input from the device.

2. The data-out register is written by the host to send output.

3. The status register has bits read by the host to ascertain the status of the device, such as

idle, ready for input, busy, error, transaction complete, etc.

4. The control register has bits written by the host to issue commands or to change settings

of the device such as parity checking, word length, or full- versus half-duplex operation.

 Figure 13.2 shows some of the most common I/O port address ranges.

Figure 13.2 - Device I/O port locations on PCs (partial).

 Another technique for communicating with devices is memory-mapped I/O.

o In this case a certain portion of the processor's address space is mapped to the device, and

communications occur by reading and writing directly to/from those memory areas.

212

o Memory-mapped I/O is suitable for devices which must move large quantities of data

quickly, such as graphics cards.

o Memory-mapped I/O can be used either instead of or more often in combination with

traditional registers. For example, graphics cards still use registers for control information

such as setting the video mode.

o A potential problem exists with memory-mapped I/O, if a process is allowed to write

directly to the address space used by a memory-mapped I/O device.

o (Note: Memory-mapped I/O is not the same thing as direct memory access, DMA. See

section 13.2.3 below.)

13.2.1 Polling

 One simple means of device handshaking involves polling:

1. The host repeatedly checks the busy bit on the device until it becomes clear.

2. The host writes a byte of data into the data-out register, and sets the write bit in the

command register (in either order.)

3. The host sets the command ready bit in the command register to notify the device

of the pending command.

4. When the device controller sees the command-ready bit set, it first sets the busy

bit.

5. Then the device controller reads the command register, sees the write bit set, reads

the byte of data from the data-out register, and outputs the byte of data.

6. The device controller then clears the error bit in the status register, the command-

ready bit, and finally clears the busy bit, signaling the completion of the operation.

 Polling can be very fast and efficient, if both the device and the controller are fast and if

there is significant data to transfer. It becomes inefficient, however, if the host must wait a

long time in the busy loop waiting for the device, or if frequent checks need to be made

for data that is infrequently there.

13.2.2 Interrupts

 Interrupts allow devices to notify the CPU when they have data to transfer or when an

operation is complete, allowing the CPU to perform other duties when no I/O transfers

need its immediate attention.

 The CPU has an interrupt-request line that is sensed after every instruction.

o A device's controller raises an interrupt by asserting a signal on the interrupt

request line.

o The CPU then performs a state save, and transfers control to the interrupt handler

routine at a fixed address in memory. (The CPU catches the interrupt and

dispatches the interrupt handler.)

o The interrupt handler determines the cause of the interrupt, performs the necessary

processing, performs a state restore, and executes a return from interrupt

instruction to return control to the CPU. (The interrupt handler clears the interrupt

by servicing the device.)

 (Note that the state restored does not need to be the same state as the one

that was saved when the interrupt went off. See below for an example

involving time-slicing.)

 Figure 13.3 illustrates the interrupt-driven I/O procedure:

213

Figure 13.3 - Interrupt-driven I/O cycle.

 The above description is adequate for simple interrupt-driven I/O, but there are three needs

in modern computing which complicate the picture:

1. The need to defer interrupt handling during critical processing,

2. The need to determine which interrupt handler to invoke, without having to poll all

devices to see which one needs attention, and

3. The need for multi-level interrupts, so the system can differentiate between high-

and low-priority interrupts for proper response.

 These issues are handled in modern computer architectures with interrupt-controller

hardware.

o Most CPUs now have two interrupt-request lines: One that is non-maskable for

critical error conditions and one that is maskable, that the CPU can temporarily

ignore during critical processing.

o The interrupt mechanism accepts an address, which is usually one of a small set of

numbers for an offset into a table called the interrupt vector. This table (usually

located at physical address zero ?) holds the addresses of routines prepared to

process specific interrupts.

o The number of possible interrupt handlers still exceeds the range of defined

interrupt numbers, so multiple handlers can be interrupt chained. Effectively the

addresses held in the interrupt vectors are the head pointers for linked-lists of

interrupt handlers.

o Figure 13.4 shows the Intel Pentium interrupt vector. Interrupts 0 to 31 are non-

maskable and reserved for serious hardware and other errors. Maskable interrupts,

including normal device I/O interrupts begin at interrupt 32.

o Modern interrupt hardware also supports interrupt priority levels, allowing

systems to mask off only lower-priority interrupts while servicing a high-priority

214

interrupt, or conversely to allow a high-priority signal to interrupt the processing of

a low-priority one.

Figure 13.4 - Intel Pentium processor event-vector table.

 At boot time the system determines which devices are present, and loads the appropriate

handler addresses into the interrupt table.

 During operation, devices signal errors or the completion of commands via interrupts.

 Exceptions, such as dividing by zero, invalid memory accesses, or attempts to access

kernel mode instructions can be signaled via interrupts.

 Time slicing and context switches can also be implemented using the interrupt

mechanism.

o The scheduler sets a hardware timer before transferring control over to a user

process.

o When the timer raises the interrupt request line, the CPU performs a state-save,

and transfers control over to the proper interrupt handler, which in turn runs the

scheduler.

o The scheduler does a state-restore of a different process before resetting the timer

and issuing the return-from-interrupt instruction.

 A similar example involves the paging system for virtual memory - A page fault causes an

interrupt, which in turn issues an I/O request and a context switch as described above,

moving the interrupted process into the wait queue and selecting a different process to run.

When the I/O request has completed (i.e. when the requested page has been loaded up

into physical memory), then the device interrupts, and the interrupt handler moves the

process from the wait queue into the ready queue, (or depending on scheduling algorithms

and policies, may go ahead and context switch it back onto the CPU.)

 System calls are implemented via software interrupts, a.k.a. traps. When a (library)

program needs work performed in kernel mode, it sets command information and possibly

data addresses in certain registers, and then raises a software interrupt. (E.g. 21 hex in

DOS.) The system does a state save and then calls on the proper interrupt handler to

process the request in kernel mode. Software interrupts generally have low priority, as

they are not as urgent as devices with limited buffering space.

215

 Interrupts are also used to control kernel operations, and to schedule activities for optimal

performance. For example, the completion of a disk read operation involves two

interrupts:

o A high-priority interrupt acknowledges the device completion, and issues the next

disk request so that the hardware does not sit idle.

o A lower-priority interrupt transfers the data from the kernel memory space to the

user space, and then transfers the process from the waiting queue to the ready

queue.

 The Solaris OS uses a multi-threaded kernel and priority threads to assign different threads

to different interrupt handlers. This allows for the "simultaneous" handling of multiple

interrupts, and the assurance that high-priority interrupts will take precedence over low-

priority ones and over user processes.

13.2.3 Direct Memory Access

 For devices that transfer large quantities of data (such as disk controllers), it is wasteful

to tie up the CPU transferring data in and out of registers one byte at a time.

 Instead this work can be off-loaded to a special processor, known as the Direct Memory

Access, DMA, Controller.
 The host issues a command to the DMA controller, indicating the location where the data

is located, the location where the data is to be transferred to, and the number of bytes of

data to transfer. The DMA controller handles the data transfer, and then interrupts the

CPU when the transfer is complete.

 A simple DMA controller is a standard component in modern PCs, and many bus-

mastering I/O cards contain their own DMA hardware.

 Handshaking between DMA controllers and their devices is accomplished through two

wires called the DMA-request and DMA-acknowledge wires.

 While the DMA transfer is going on the CPU does not have access to the PCI bus (

including main memory), but it does have access to its internal registers and primary and

secondary caches.

 DMA can be done in terms of either physical addresses or virtual addresses that are

mapped to physical addresses. The latter approach is known as Direct Virtual Memory

Access, DVMA, and allows direct data transfer from one memory-mapped device to

another without using the main memory chips.

 Direct DMA access by user processes can speed up operations, but is generally forbidden

by modern systems for security and protection reasons. (I.e. DMA is a kernel-mode

operation.)

 Figure 13.5 below illustrates the DMA process.

216

Figure 13.5 - Steps in a DMA transfer.

13.2.4 I/O Hardware Summary

13.3 Application I/O Interface

 User application access to a wide variety of different devices is accomplished through layering,

and through encapsulating all of the device-specific code into device drivers, while application

layers are presented with a common interface for all (or at least large general categories of)

devices.

Figure 13.6 - A kernel I/O structure.

 Devices differ on many different dimensions, as outlined in Figure 13.7:

217

Figure 13.7 - Characteristics of I/O devices.

 Most devices can be characterized as either block I/O, character I/O, memory mapped file access,

or network sockets. A few devices are special, such as time-of-day clock and the system timer.

 Most OSes also have an escape, or back door, which allows applications to send commands

directly to device drivers if needed. In UNIX this is the ioctl() system call (I/O Control). Ioctl()

takes three arguments - The file descriptor for the device driver being accessed, an integer

indicating the desired function to be performed, and an address used for communicating or

transferring additional information.

13.3.1 Block and Character Devices

 Block devices are accessed a block at a time, and are indicated by a "b" as the first

character in a long listing on UNIX systems. Operations supported include read(), write(

), and seek().

o Accessing blocks on a hard drive directly (without going through the filesystem

structure) is called raw I/O, and can speed up certain operations by bypassing the

buffering and locking normally conducted by the OS. (It then becomes the

application's responsibility to manage those issues.)

o A new alternative is direct I/O, which uses the normal filesystem access, but which

disables buffering and locking operations.

 Memory-mapped file I/O can be layered on top of block-device drivers.

o Rather than reading in the entire file, it is mapped to a range of memory addresses,

and then paged into memory as needed using the virtual memory system.

o Access to the file is then accomplished through normal memory accesses, rather

than through read() and write() system calls. This approach is commonly used for

executable program code.

 Character devices are accessed one byte at a time, and are indicated by a "c" in UNIX

long listings. Supported operations include get() and put(), with more advanced

functionality such as reading an entire line supported by higher-level library routines.

13.3.2 Network Devices

 Because network access is inherently different from local disk access, most systems

provide a separate interface for network devices.

 One common and popular interface is the socket interface, which acts like a cable or

pipeline connecting two networked entities. Data can be put into the socket at one end, and

218

read out sequentially at the other end. Sockets are normally full-duplex, allowing for bi-

directional data transfer.

 The select() system call allows servers (or other applications) to identify sockets which

have data waiting, without having to poll all available sockets.

13.3.3 Clocks and Timers

 Three types of time services are commonly needed in modern systems:

o Get the current time of day.

o Get the elapsed time (system or wall clock) since a previous event.

o Set a timer to trigger event X at time T.

 Unfortunately time operations are not standard across all systems.

 A programmable interrupt timer, PIT can be used to trigger operations and to measure

elapsed time. It can be set to trigger an interrupt at a specific future time, or to trigger

interrupts periodically on a regular basis.

o The scheduler uses a PIT to trigger interrupts for ending time slices.

o The disk system may use a PIT to schedule periodic maintenance cleanup, such as

flushing buffers to disk.

o Networks use PIT to abort or repeat operations that are taking too long to

complete. I.e. resending packets if an acknowledgement is not received before the

timer goes off.

o More timers than actually exist can be simulated by maintaining an ordered list of

timer events, and setting the physical timer to go off when the next scheduled

event should occur.

 On most systems the system clock is implemented by counting interrupts generated by the

PIT. Unfortunately this is limited in its resolution to the interrupt frequency of the PIT,

and may be subject to some drift over time. An alternate approach is to provide direct

access to a high frequency hardware counter, which provides much higher resolution and

accuracy, but which does not support interrupts.

13.3.4 Blocking and Non-blocking I/O

 With blocking I/O a process is moved to the wait queue when an I/O request is made, and moved

back to the ready queue when the request completes, allowing other processes to run in the

meantime.

 With non-blocking I/O the I/O request returns immediately, whether the requested I/O operation

has (completely) occurred or not. This allows the process to check for available data without

getting hung completely if it is not there.

 One approach for programmers to implement non-blocking I/O is to have a multi-threaded

application, in which one thread makes blocking I/O calls (say to read a keyboard or mouse),

while other threads continue to update the screen or perform other tasks.

 A subtle variation of the non-blocking I/O is the asynchronous I/O, in which the I/O request

returns immediately allowing the process to continue on with other tasks, and then the process is

notified (via changing a process variable, or a software interrupt, or a callback function) when

the I/O operation has completed and the data is available for use. (The regular non-blocking I/O

returns immediately with whatever results are available, but does not complete the operation and

notify the process later.)

219

Figure 13.8 - Two I/O methods: (a) synchronous and (b) asynchronous.

13.3.5 Vectored I/O (NEW)

13.4 Kernel I/O Subsystem

13.4.1 I/O Scheduling

 Scheduling I/O requests can greatly improve overall efficiency. Priorities can also play a

part in request scheduling.

 The classic example is the scheduling of disk accesses, as discussed in detail in chapter 12.

 Buffering and caching can also help, and can allow for more flexible scheduling options.

 On systems with many devices, separate request queues are often kept for each device:

Figure 13.9 - Device-status table.

13.4.2 Buffering

 Buffering of I/O is performed for (at least) 3 major reasons:

1. Speed differences between two devices. (See Figure 13.10 below.) A slow device

may write data into a buffer, and when the buffer is full, the entire buffer is sent to

the fast device all at once. So that the slow device still has somewhere to write

while this is going on, a second buffer is used, and the two buffers alternate as

each becomes full. This is known as double buffering. (Double buffering is often

220

used in (animated) graphics, so that one screen image can be generated in a buffer

while the other (completed) buffer is displayed on the screen. This prevents the

user from ever seeing any half-finished screen images.)

2. Data transfer size differences. Buffers are used in particular in networking systems

to break messages up into smaller packets for transfer, and then for re-assembly at

the receiving side.

3. To support copy semantics. For example, when an application makes a request for

a disk write, the data is copied from the user's memory area into a kernel buffer.

Now the application can change their copy of the data, but the data which

eventually gets written out to disk is the version of the data at the time the write

request was made.

Figure 13.10 - Sun Enterprise 6000 device-transfer rates (logarithmic).

13.4.3 Caching

 Caching involves keeping a copy of data in a faster-access location than where the data is

normally stored.

 Buffering and caching are very similar, except that a buffer may hold the only copy of a

given data item, whereas a cache is just a duplicate copy of some other data stored

elsewhere.

 Buffering and caching go hand-in-hand, and often the same storage space may be used for

both purposes. For example, after a buffer is written to disk, then the copy in memory can

be used as a cached copy, (until that buffer is needed for other purposes.)

13.4.4 Spooling and Device Reservation

 A spool (Simultaneous Peripheral Operations On-Line) buffers data for (peripheral)

devices such as printers that cannot support interleaved data streams.

221

 If multiple processes want to print at the same time, they each send their print data to files

stored in the spool directory. When each file is closed, then the application sees that print

job as complete, and the print scheduler sends each file to the appropriate printer one at a

time.

 Support is provided for viewing the spool queues, removing jobs from the queues, moving

jobs from one queue to another queue, and in some cases changing the priorities of jobs in

the queues.

 Spool queues can be general (any laser printer) or specific (printer number 42.)

 OSes can also provide support for processes to request / get exclusive access to a

particular device, and/or to wait until a device becomes available.

13.4.5 Error Handling

 I/O requests can fail for many reasons, either transient (buffers overflow) or permanent

(disk crash).

 I/O requests usually return an error bit (or more) indicating the problem. UNIX systems

also set the global variable errno to one of a hundred or so well-defined values to indicate

the specific error that has occurred. (See errno.h for a complete listing, or man errno.)

 Some devices, such as SCSI devices, are capable of providing much more detailed

information about errors, and even keep an on-board error log that can be requested by the

host.

13.4.6 I/O Protection

 The I/O system must protect against either accidental or deliberate erroneous I/O.

 User applications are not allowed to perform I/O in user mode - All I/O requests are

handled through system calls that must be performed in kernel mode.

 Memory mapped areas and I/O ports must be protected by the memory management

system, but access to these areas cannot be totally denied to user programs. (Video games

and some other applications need to be able to write directly to video memory for optimal

performance for example.) Instead the memory protection system restricts access so that

only one process at a time can access particular parts of memory, such as the portion of

the screen memory corresponding to a particular window.

Figure 13.11 - Use of a system call to perform I/O.

222

13.4.7 Kernel Data Structures

 The kernel maintains a number of important data structures pertaining to the I/O system,

such as the open file table.

 These structures are object-oriented, and flexible to allow access to a wide variety of I/O

devices through a common interface. (See Figure 13.12 below.)

 Windows NT carries the object-orientation one step further, implementing I/O as a

message-passing system from the source through various intermediaries to the device.

Figure 13.12 - UNIX I/O kernel structure.

13.4.6 Kernel I/O Subsystem Summary

13.5 Transforming I/O Requests to Hardware Operations

 Users request data using file names, which must ultimately be mapped to specific blocks of data

from a specific device managed by a specific device driver.

 DOS uses the colon separator to specify a particular device (e.g. C:, LPT:, etc.)

 UNIX uses a mount table to map filename prefixes (e.g. /usr) to specific mounted devices.

Where multiple entries in the mount table match different prefixes of the filename the one that

matches the longest prefix is chosen. (e.g. /usr/home instead of /usr where both exist in the mount

table and both match the desired file.)

 UNIX uses special device files, usually located in /dev, to represent and access physical devices

directly.

o Each device file has a major and minor number associated with it, stored and displayed

where the file size would normally go.

o The major number is an index into a table of device drivers, and indicates which device

driver handles this device. (E.g. the disk drive handler.)

o The minor number is a parameter passed to the device driver, and indicates which specific

device is to be accessed, out of the many which may be handled by a particular device

driver. (e.g. a particular disk drive or partition.)

223

 A series of lookup tables and mappings makes the access of different devices flexible, and

somewhat transparent to users.

 Figure 13.13 illustrates the steps taken to process a (blocking) read request:

Figure 13.13 - The life cycle of an I/O request.

13.6 STREAMS (Optional)

 The streams mechanism in UNIX provides a bi-directional pipeline between a user process and a

device driver, onto which additional modules can be added.

 The user process interacts with the stream head.

 The device driver interacts with the device end.

 Zero or more stream modules can be pushed onto the stream, using ioctl(). These modules may

filter and/or modify the data as it passes through the stream.

 Each module has a read queue and a write queue.

 Flow control can be optionally supported, in which case each module will buffer data until the

adjacent module is ready to receive it. Without flow control, data is passed along as soon as it is

ready.

 User processes communicate with the stream head using either read() and write() (or putmsg()

and getmsg() for message passing.)

224

 Streams I/O is asynchronous (non-blocking), except for the interface between the user process

and the stream head.

 The device driver must respond to interrupts from its device - If the adjacent module is not

prepared to accept data and the device driver's buffers are all full, then data is typically dropped.

 Streams are widely used in UNIX, and are the preferred approach for device drivers. For example,

UNIX implements sockets using streams.

Figure 13.14 - The SREAMS structure.

13.7 Performance (Optional)

 The I/O system is a major factor in overall system performance, and can place heavy loads on

other major components of the system (interrupt handling, process switching, memory access,

bus contention, and CPU load for device drivers just to name a few.)

 Interrupt handling can be relatively expensive (slow), which causes programmed I/O to be faster

than interrupt-driven I/O when the time spent busy waiting is not excessive.

 Network traffic can also put a heavy load on the system. Consider for example the sequence of

events that occur when a single character is typed in a telnet session, as shown in figure 13.15. (

And the fact that a similar set of events must happen in reverse to echo back the character that

was typed.) Sun uses in-kernel threads for the telnet daemon, increasing the supportable number

of simultaneous telnet sessions from the hundreds to the thousands.

225

Figure 13.15 - Intercomputer communications.

 Other systems use front-end processors to off-load some of the work of I/O processing from the

CPU. For example a terminal concentrator can multiplex with hundreds of terminals on a single

port on a large computer.

 Several principles can be employed to increase the overall efficiency of I/O processing:

1. Reduce the number of context switches.

2. Reduce the number of times data must be copied.

3. Reduce interrupt frequency, using large transfers, buffering, and polling where

appropriate.

4. Increase concurrency using DMA.

5. Move processing primitives into hardware, allowing their operation to be concurrent with

CPU and bus operations.

6. Balance CPU, memory, bus, and I/O operations, so a bottleneck in one does not idle all

the others.

 The development of new I/O algorithms often follows a progression from application level code

to on-board hardware implementation, as shown in Figure 13.16. Lower-level implementations

are faster and more efficient, but higher-level ones are more flexible and easier to modify.

Hardware-level functionality may also be harder for higher-level authorities (e.g. the kernel) to

control.

226

Figure 13.16 - Device functionality progression.

13.8 Summary

227

Course material

UNIT V CASE STUDIES
5.1 The Linux System
� An operating system is a program that acts as an interface between the user and the computer
hardware and controls the execution of all kinds of programs. The Linux open source operating system,
or Linux OS, is a freely distributable, cross-platform operating system based on UNIX.
� The Linux consist of a kernel and some system programs. There are also some application programs for
doing work. The kernel is the heart of the operating system which provides a set of tools that are used
by system calls.
� The defining component of Linux is the Linux kernel, an operating system kernel first released on 5
October 1991 by Linus Torvalds.

� A Linux-based system is a modular Unix-like operating system. It derives much of its basic design from
principles established in UNIX. Such a system uses a monolithic kernel which handles process control,
networking, and peripheral and file system access.

5.2 Important features of Linux Operating System
� Portable - Portability means software can work on different types of hardware in same way. Linux
kernel and application programs supports their installation on any kind of hardware platform.
� Open Source - Linux source code is freely available and it is community based development project.
� Multi-User & Multiprogramming - Linux is a multiuser system where multiple users can access system
resources like memory/ ram/ application programs at same time. Linux is a multiprogramming system
means multiple applications can run at same time.
� Hierarchical File System - Linux provides a standard file structure in which system files/ user files are
arranged.

� Shell - Linux provides a special interpreter program which can be used to execute commands of the
operating system.
� Security - Linux provides user security using authentication features like password protection/
controlled access to specific files/ encryption of data.

5.3 Components of Linux System
Linux Operating System has primarily three components
� Kernel - Kernel is the core part of Linux. It is responsible for all major activities of this operating system.
It is consists of various modules and it interacts directly with the underlying hardware. Kernel provides
the required abstraction to hide low level hardware details to system or application programs.
� System Library - System libraries are special functions or programs using which application programs
or system utilities accesses Kernel's features. These libraries implements most of the functionalities of
the operating system and do not requires kernel module's code access rights.
� System Utility - System Utility programs are responsible to do specialized, individual level tasks
Installed components of a Linux system include the following:
� A bootloader is a program that loads the Linux kernel into the computer's main memory, by being
executed by the computer when it is turned on and after the firmware initialization is performed.
� An init program is the first process launched by the Linux kernel, and is at the root of the process tree.
� Software libraries, which contain code that can be used by running processes. The most commonly
used software library on Linux systems, the GNU C Library (glibc), C standard library and Widget toolkits.
� User interface programs such as command shells or windowing environments. The user interface, also
known as the shell, is either a command-line interface (CLI), a graphical user interface (GUI), or through
controls attached to the associated hardware.

5.4 Architecture
Linux System Architecture is consists of following layers
1. Hardware layer - Hardware consists of all peripheral devices (RAM/ HDD/ CPU etc).
2. Kernel - Core component of Operating System, interacts directly with hardware, provides low level

228

services to upper layer components.
3. Shell - An interface to kernel, hiding complexity of kernel's functions from users. Takes commands
from user and executes kernel's functions.
4. Utilities - Utility programs giving user most of the functionalities of an operating systems.

5.5 Modes of operation
� Kernel Mode:

� Kernel component code executes in a special privileged mode called kernel mode with full
access to all resources of the computer.
� This code represents a single process, executes in single address space and do not require any
context switch and hence is very efficient and fast.
� Kernel runs each processes and provides system services to processes, provides protected
access to hardware to processes.
� User Mode:

� The system programs use the tools provided by the kernel to implement the various services
required from an operating system. System programs, and all other programs, run `on top of
the kernel', in what is called the user mode.
� Support code which is not required to run in kernel mode is in System Library.

� User programs and other system programs work in User Mode which has no access to system
hardware and kernel code.
� User programs/ utilities use System libraries to access Kernel functions to get system's low level
tasks.

5.6 Major Services provided by LINUX System

1. Initialization (init)

The single most important service in a LINUX system is provided by init program. The
init is started as the first process of every LINUX system, as the last thing the kernel does when
it boots. When init starts, it continues the boot process by doing various startup chores
(checking and mounting file systems, starting daemons, etc).
2. Logins from terminals (getty)

Logins from terminals (via serial lines) and the console are provided by the getty

program. init starts a separate instance of getty for each terminal upon which logins are to be
allowed. Getty reads the username and runs the login program, which reads the password. If
the username and password are correct, login runs the shell.
3. Logging and Auditing (syslog)

The kernel and many system programs produce error, warning, and other messages. It
is often important that these messages can be viewed later, so they should be written to a file.
The program doing this logging operation is known as syslog.
4. Periodic command execution (cron & at)

Both users and system administrators often need to run commands periodically. For
example, the system administrator might want to run a command to clean the directories with
temporary files from old files, to keep the disks from filling up, since not all programs clean up
after themselves correctly.
o The cron service is set up to do this. Each user can have a crontab file, where the lists
the commands wish to execute and the times they should be executed.
o The at service is similar to cron, but it is once only: the command is executed at the
given time, but it is not repeated.

5. Graphical user interface

o UNIX and Linux don't incorporate the user interface into the kernel; instead, they let it
be implemented by user level programs. This applies for both text mode and graphical

229

environments. This arrangement makes the system more flexible.
 The graphical environment primarily used with Linux is called the X Window System (X
for short) that provides tools with which a GUI can be implemented. Some popular
window managers are blackbox and windowmaker. There are also two popular desktop
managers, KDE and Gnome.

6. Network logins (telnet, rlogin & ssh)

Network logins work a little differently than normal logins. For each person logging in via the
network there is a separate virtual network connection. It is therefore not possible to run a separate
getty for each virtual connection. There are several different ways to log in via a network, telnet and
ssh being the major ones in TCP/IP networks.
Most of Linux system administrators consider telnet and rlogin to be insecure and prefer ssh,
the ``secure shell'', which encrypts traffic going over the network, thereby making it far less likely that
the malicious can ``sniff'' the connection and gain sensitive data like usernames and passwords.

7. Network File System (NFS & CIFS)
One of the more useful things that can be done with networking services is sharing files via a
network file system. Depending on your network this could be done over the Network File System (NFS),
or over the Common Internet File System (CIFS).
NFS is typically a 'UNIX' based service. In Linux, NFS is supported by the kernel. CIFS however is
not. In Linux, CIFS is supported by Samba. With a network file system any file operations done by a
program on one machine are sent over the network to another computer.
UNIX Timeline - Simplified history of Unix-like operating systems

5.7 SYSTEM ADMINISTRATOR

� A system administrator is a person who is responsible for the configuration and reliable
operation of computer systems, especially multi-user computers, such as servers.
� The system administrator seeks to ensure that the uptime, performance, resources, and
security of the computers without exceeding the budget.
� To meet these needs, a system administrator may acquire, install, or upgrade computer
components and software, provide routine automation, maintain security policies AND
troubleshoot.

5.7.1 Responsibilities of a System Administrator

A system administrator's responsibilities might include:
� Installing and configuring new hardware and software.
� Applying operating system updates, patches, and configuration changes.
� Analyzing system logs and identifying potential issues with computer systems.
� Introducing and integrating new technologies into existing data center environments and
configuring, adding, and deleting file systems.
� Performing routine audit of systems and software.
� Adding, removing, or updating user account information, resetting passwords, etc.
� Responsibility for security and documenting the configuration of the system.
� Troubleshooting any reported problems.
� System performance tuning.

5.7.2 Various System Administrator Roles

In a larger company, these may all be separate positions within a computer support or Information
Services (IS) department. In a smaller group they may be shared by a few sysadmins, or even a single
person.

230

� A database administrator (DBA) maintains a database system, and is responsible for the
integrity of the data and the efficiency and performance of the system.
� A network administrator maintains network infrastructure such as switches and routers, and
diagnoses problems with these or with the behaviour of network-attached computers.
� A security administrator is a specialist in computer and network security, including the
administration of security devices such as firewalls, as well as consulting on general security
measures.
� A web administrator maintains web server services (such as Apache or IIS) that allow for
internal or external access to web sites. Tasks include managing multiple sites, administering
security, and configuring necessary components and software.
� A computer operator performs routine maintenance and upkeep, such as changing backup
tapes or replacing failed drives in a redundant array of independent disks (RAID).
� A postmaster administers a mail server.
� A Storage Administrator (SAN) can create, provision, add or remove Storage to/from
Computer systems. Storage can be attached locally to the system or from a storage area
network (SAN) or network-attached storage (NAS).

5.7.3 Requirements for LINUX system administrator
1. While specific knowledge is a boon, system administrator should possess basic knowledge about all
aspects of Linux. For example, a little knowledge about Solaris, BSD, nginx or various flavors of
Linux.
2. Knowledge in at least one of the upper tier scripting language such as Python, Perl, Ruby or more.
3. To be a system administrator, he/she at least needs to have some hands-on experience of system
management, system setup and managing Linux or Solaris based servers as well as configuring
them.
4. Knowledge in shell programming such as Buorne or Korn and architecture.
5. Knowledge about storage technologies like FC, NFS or iSCSI is great, while knowledge regarding
backup technologies is a must for a system administrator.
6. Knowledge in testing methodologies like Subversion or Git is great, while knowledge of version
control is also an advantage.
7. Knowledge about basics of configuration management tools like Puppet and Chef.
8. Skills with system and application monitoring tools like SNMP or Nagios are also important, as they
show your ability as an administrator in a team setting.
9. Knowledge about how to operate virtualized VMWare or Xen Server, Multifunction Server and
Samba
10. An ITIL Foundation certification for Linux system administrator.

5.8 SETTING UP A LINUX MULTIFUNCTION SERVER

A Linux machine can be configured as a server either by compiling several well-defined scripts
and off-line downloaded packages or through on-line installation method. Setting up a
multifunction server, the system administrator should have knowledge about a series of shell
commands. A Linux machine can be configured as any of following application servers such as,
• A Web Server (Apache 2.0.x)
• A Mail Server (Postfix)
• A DNS Server (BIND 9)
• An FTP Server (ProFTPD)
• Mail Delivery Agents (POP3/POP3s/IMAP/IMAPs)
• Webalizer for web site statistics
Files and directories shared by Linux system, as viewed from a Windows PC

5.8.1 Server Requirements

231

To set up a Linux Internet server, we will need a connection to the Internet and a static IP
address. The system can also be setup with the address leased by ISP and configure it statically.
Computer with at least a Pentium III CPU, a minimum of 256 MB of RAM, and a 10 GB hard
drive is preferred. Obviously, a newer CPU and additional memory will provide better performance.
This chapter is based on Debian’s stable version. We strongly suggest using a CD with the Netinstall
kernel. The Debian web site provides downloadable CD images.

5.8.2 Installing & Configuring Network Services

Administrator should log into the server from a remote console on desktop. It is recommended
to do further administration from another system (even a laptop), because a secure server normally
runs in what is called headless mode—that is, it has no monitor or keyboard.
Get used to administering the server like this. A SSH client on the remote machine is needed
which virtually all Linux distributions have and which can be downloaded for other operating
systems as well.
Configuring the Network

If DHCP is used during the Debian installation, Server with a static IP address should be
configured as follows,
1. To change the settings to use a static IP address, you’ll need to become root and
edit the file /etc/network/interfaces to suit your needs. As an example, we’ll use
the IP address 70.153.258.42.
2. To add the IP address 70.153.258.42 to the interface eth0, we must change the file
to look like this (you’ll have to obtain some of the information from your ISP):
auto eth0
iface eth0 inet static
address 70.153.258.42
netmask 255.255.255.248
network 70.153.258.0
broadcast 70.153.258.47
gateway 70.153.258.46

3. After editing the /etc/network/interfaces file, restart the network by entering:
/etc/init.d/networking restart

4. To edit /etc/resolv.conf and add nameservers to resolve Internet hostnames to
their corresponding IP addresses. At this point, we will simply set up a minimal DNS
server. Our resolv.conf looks as follows:
search server
nameserver 70.153.258.42
nameserver 70.253.158.45
nameserver 151.164.1.8

5. Now edit /etc/hosts and add your IP addresses:
127.0.0.1 localhost.localdomain localhost server1
70.153.258.42 server1.centralsoft.org server1

6. Now, to set the hostname, enter these commands:
echo server1.centralsoft.org > /etc/hostname
/bin/hostname -F /etc/hostname

7. verify that you configured your hostname correctly by running the hostname

command:
~$ hostname -f
server1.centralsoft.org
5.9 Providing Domain Name Services (BIND - the ubiquitous DNS server)

� Debian provides a stable version of BIND in its repositories. BIND can be installed, setup

232

and secure it in a chroot environment, meaning it won’t be able to see or access files
outside its own directory tree. This is an important security technique.
� The term chroot refers to the trick of changing the root filesystem (the /directory) that a
process sees, so that most of the system is effectively inaccessible to it.
� The BIND server also can be configured to run as a non-root user. That way, if someone
gains access to BIND, he/she won’t gain root privileges or be able to control other
processes.
1. To install BIND on your Debian server, run this command:
apt-get install bind9

Debian downloads and configures the file as an Internet service and the status can be
seen on the console:
Setting up bind9 (9.2.4-1)
Adding group `bind' (104) - Done.
Adding system user `bind'
Adding new user `bind' (104) with group `bind'.
Not creating home directory.
Starting domain name service: named.

2. To put BIND in a secured environment, create a directory where the service can run
unexposed to other processes. First stop the service by running the following command:
/etc/init.d/bind9 stop

3. Edit the file /etc/default/bind9 so that the daemon will run as the unprivileged user bind,
chrooted to /var/lib/named. Change the line:
OPTS="-u bind"

So that it reads:
OPTIONS="-u bind -t /var/lib/named"

4. To provide a complete environment for running BIND, create the necessary directories
under /var/lib:
mkdir -p /var/lib/named/etc
mkdir /var/lib/named/dev
mkdir -p /var/lib/named/var/cache/bind
mkdir -p /var/lib/named/var/run/bind/run

Then move the config directory from /etc to /var/lib/named/etc:
mv /etc/bind /var/lib/named/etc

Next, create a symbolic link to the new config directory from the old location, to avoid
problems when BIND is upgraded in the future:
ln -s /var/lib/named/etc/bind /etc/bind

Make null and random devices for use by BIND, and fix the permissions of the directories:
mknod /var/lib/named/dev/null c 1 3
mknod /var/lib/named/dev/random c 1 8

Then change permissions and ownership on the files:
chmod 666 /var/lib/named/dev/null
/var/lib/named/dev/random
chown -R bind:bind /var/lib/named/var/*
chown -R bind:bind /var/lib/named/etc/bind

5. Finally, start BIND:
/etc/init.d/bind9 start
6. To check whether named is functioning without any trouble.

Execute this command:
server1:/home/admin# rndc status
number of zones: 6
debug level: 0

233

xfers running: 0
xfers deferred: 0
soa queries in progress: 0
query logging is OFF
server is up and running
server1:/home/admin#
Setting up Ubuntu shares in a Windows environment
Ubuntu’s setup screen for file-sharing services
5.10 Virtualization

� Virtualization refers to the act of creating a virtual (rather than actual) version of
something, including a virtual computer hardware platform, operating system (OS),
storage device, or computer network resources.
Traditional Architecture vs. Virtual Architecture
Virtual Machine Server – A Layered Approach

� Hardware virtualization or platform virtualization refers to the creation of a virtual
machine that acts like a real computer with an operating system. Software executed on
these virtual machines is separated from the underlying hardware resources.
� Hardware virtualization hides the physical characteristics of a computing platform from
users, instead showing another abstract computing platform.
� For example, a computer that is running Microsoft Windows may host a virtual machine
that looks like a computer with the Ubuntu Linux operating system; Ubuntu-based
software can be run on the virtual machine.
Benefits of Virtualization
Hardware Virtualization

1. Instead of deploying several physical servers for each service, only one server can
be used. Virtualization let multiple OSs and applications to run on a server at a time.
Consolidate hardware to get vastly higher productivity from fewer servers.
2. If the preferred operating system is deployed as an image, so we needed to go
through the installation process only once for the entire infrastructure.
3. Improve business continuity: Virtual operating system images allow us for instant
recovery in case of a system failure. The crashed system can be restored back by
coping the virtual image.
4. Increased uptime: Most server virtualization platforms offer a number of advanced
features that just aren't found on physical servers which increases servers’ uptime.
Some of features are live migration, storage migration, fault tolerance, high
availability, and distributed resource scheduling.
5. Reduce capital and operating costs: Server consolidation can be done by running
multiple virtual machines (VM) on a single physical server. Fewer servers means
lower capital and operating costs.
Architecture - Virtualization

The heart of virtualization is the “virtual machine” (VM), a tightly isolated software
container with an operating system and application inside. Because each virtual machine is
completely separate and independent, many of them can run simultaneously on a single
computer. A thin layer of software called a hypervisor decouples the virtual machines from the
host and dynamically allocates computing resources to each virtual machine as needed.
This architecture redefines your computing equation and delivers:
� Many applications on each server: As each virtual machine encapsulates an entire
machine, many applications and operating systems can run on a single host at the same
time.
� Maximum server utilization, minimum server count: Every physical machine is used to

234

its full capacity, allowing you to significantly reduce costs by deploying fewer servers
overall.
� Faster, easier application and resource provisioning: As self-contained software files,
virtual machines can be manipulated with copy-and-paste ease. Virtual machines can
even be transferred from one physical server to another while running, via a process
known as live migration.
5.10.1 Setting up a VMware Workstation
VMware Workstation

VMware Workstation is developed and sold by VMware, Inc., a division of EMC
Corporation. VMware Workstation is a hypervisor that runs on x86 or x86-64 computers; it
enables users to set up one or more virtual machines (VMs) on a single physical machine, and
use them simultaneously along with the actual machine.
Each virtual machine can execute its own operating system, including versions of
Microsoft Windows, Linux, BSD, and MS-DOS. VMware Workstation supports bridging existing
host network adapters and share physical disk drives and USB devices with a virtual machine.
In addition, it can simulate disk drives. It can mount an existing ISO image file into a virtual
optical disc drive so that the virtual machine sees it as a real one. Likewise, virtual hard disk
drives are made via .vmdk files.
VMware Workstation can save the state of a virtual machine (a "snapshot") at any
instant. These snapshots can later be restored, effectively returning the virtual machine to the
saved state.
VMware Workstation

VMware Workstation includes the ability to designate multiple virtual machines as a
team which can then be powered on, powered off, suspended or resumed as a single object,
making it particularly useful for testing client-server environments.
VMWare Player

The VMware Player, a virtualization package of basically similar, but reduced,
functionality, is also available, and is free of charge for non-commercial use, or for distribution
or other use by written agreement.
VMware Player is a virtualization software package supplied free of charge by VMware,
Inc. VMware Player can run existing virtual appliances and create its own virtual machines. It
uses the same virtualization core as VMware Workstation, a similar program with more
features, but not free of charge. VMware Player is available for personal non-commercial use,
or for distribution or other use by written agreement.
VMware claims the Player offers better graphics, faster performance, and tighter
integration for running Windows XP under Windows Vista or Windows 7 than Microsoft's
Windows XP Mode running on Windows Virtual PC, which is free of charge for all purposes.
VMware Tools

VMware Tools is a package with drivers and other software that can be installed in guest
operating systems to increase their performance. It has several components, including the
following drivers for the emulated hardware:
� VESA-compliant graphics for the guest machine to access high screen resolutions
� Network drivers for the vmxnet2 � Mouse integration, Drag-and-drop file support
� Clipboard sharing between host and guest
� Time synchronization capabilities (guest syncs with host machine's clock)
� Support for Unity, a feature that allows seamless integration of applications with the
host desktop
Installing and Configuring VMWare

1. Download VMware Server 2. VMware management console on a remote Ubuntu
desktop behind a firewall at a remote location. Run the following command:

235

$gksu vmware-server-console

2. Install the VMware Server 2.0.2 rpm as shown below.
rpm -ivh VMware-server-2.0.2-203138.i386.rpm
Preparing...
1:VMware-server
[100%]

The installation of VMware Server 2.0.2 for Linux completed successfully.
You can decide to remove this software from your system at any time by invoking the
following command:
rpm -e VMware-server

Before running VMware Server for the first time, you need to configure it for your
running kernel by invoking the following command:
/usr/bin/vmware-config.pl

3. Configure VMware Server 2 using vmware-config.pl. Execute the vmware-config.pl as
shown below. Accept default values for everything. Partial output of the vmwareconfig.
pl is shown below.
/usr/bin/vmware-config.pl

4. Go to VMware Infrastructure Webaccess. Go to https://{host-os-ip}:8333/ui to access
the VMware Infrastructure web access console.
VMware Web Access Login

Installing a VMware Guest OS

1. Start VMware Workstation

Windows host: Double-click the VMware Workstation icon on your desktop or use the
Start menu (Start > Programs > VMware > VMware Workstation).
Linux host: In a terminal window, enter the command
vmware &

2. Start the New Virtual Machine Wizard

When you start VMware Workstation, you can open an existing virtual machine or
create a new one. Choose File > New > Virtual Machine to begin creating your virtual
machine.
3. Select the method you want to use for configuring your virtual machine.
If you select Typical, the wizard prompts you to specify or accept defaults for the
following choices:
� The guest operating system
� The virtual machine name and the location of the virtual machine's files
� The network connection type
� Whether to allocate all the space for a virtual disk at the time you create it
� Whether to split a virtual disk into 2GB files
If you select Custom, the wizard prompts you to specify or accept defaults for the
following choices:
� Make a legacy virtual machine that is compatible with Workstation 4.x, GSX
Server 3.x, ESX Server 2.x and VMware ACE 1.x.
� Use an IDE virtual disk for a guest operating system that would otherwise have
a SCSI virtual disk created by default
� Use a physical disk rather than a virtual disk and Set memory options that are
different from the defaults
4. Select a guest operating system and type a name and folder for the virtual machine.
Linux hosts: The default location for this Windows XP Professional virtual machine is
<homedir>/vmware/winXPPro, where <homedir> is the home directory of the user who is

236

currently logged on.

5. Specify the number of processors for the virtual machine. The setting Two is supported
only for host machines with at least two logical processors.
If you selected Custom as your configuration path, you may adjust the memory settings
or accept the defaults, then click Next to continue.
6. Configure the networking capabilities of the virtual machine.
If you selected Typical as your configuration path, click Finish and the wizard
sets up the files needed for your virtual machine.
If you selected Custom as your configuration path, continue with the steps
below to configure a disk for your virtual machine.
7. Select whether to create an IDE or SCSI disk and specify the capacity of the virtual disk.
8. Click Finish. The wizard sets up the files needed for your virtual machine.
5.10.2 Setting up a XEN Workstation
XEN Workstation

Xen is a hypervisor using a microkernel design, providing services that allow multiple
computer operating systems to execute on the same computer hardware concurrently.
The University of Cambridge Computer Laboratory developed the first versions of Xen.
The Xen community develops and maintains Xen as free and open-source software, subject to
the requirements of the GNU General Public License (GPL), version 2. Xen is currently available
for the IA-32, x86-64 and ARM instruction sets.
XenServer runs directly on server hardware without requiring an underlying operating
system, which results in an efficient and scalable system. XenServer works by abstracting
elements from the physical machine (such as hard drives, resources and ports) and allocating
them to the virtual machines running on it.
XEN Environment

Responsibilities of the hypervisor include memory management and CPU scheduling of
all virtual machines, and for launching the most privileged domain - the only virtual machine
which by default has direct access to hardware. From the dom0 the hypervisor can be managed
and unprivileged domains can be launched.
Benefits of Using XenServer
1. Using XenServer reduces costs by:

• Consolidating multiple VMs onto physical servers
• Reducing the number of separate disk images that need to be managed
• Allowing for easy integration with existing networking and storage infrastructures
2. Using XenServer increases flexibility by:

• Allowing you to schedule zero downtime maintenance by using XenMotion to live
migrate VMs between XenServer hosts
• Increasing availability of VMs by using High Availability to configure policies that
restart VMs on another XenServer host if one fails
• Increasing portability of VM images, as one VM image will work on a range of
deployment infrastructures
Course material

Administering XenServer

� There are two methods by which to administer XenServer: XenCenter and the XenServer
Command-Line Interface (CLI).
� XenCenter is a graphical, Windows-based user interface. XenCenter allows you to manage
XenServer hosts, pools and shared storage, and to deploy, manage and monitor VMs from
your Windows desktop machine.
� The XenCenter on-line Help is a useful resource for getting started with XenCenter and for
context-sensitive assistance.

237

Installing and Configuring XenServer
1. Type the following command to get information about xen server package
yum info xen
2. Run the system-config-securitylevel program or edit /etc/selinux/config to looks as follows:
SELINUX=Disabled
SELINUXTYPE=targeted
If you changed the SELINUX value from enforcing, you’ll need to reboot Fedora before proceeding.
3. This command will install the Xen hypervisor, a Xen-modified Fedora kernel called domain 0, and
various utilities:
yum install kernel-xen0
4. To make the Xen kernel the default, change this line:
default=1
to
default=0
5. Now you can reboot. Xen should start automatically, but let’s check:
/usr/sbin/xm list
Name ID Mem(MiB) VCPUs State Time(s)
Domain-0 0 880 1 r----- 20.5
The output should show that Domain-0 is running. Domain 0 controls
all the guest operating systems that run on the processor,
similarly to how the kernel controls processes in an operating
system.

Installing a Xen Guest OS from the Command-line
1. Preparing the System for virt-install

Fedora Linux does not install VNC by default. To verify whether VNC is installed, run the
following command from a Terminal Window:
rpm -q vnc
Course material
If rpm reports that VNC is not installed, it may be installed from root as follows:
yum install vnc
2. Running virt-install to Build the Xen Guest System

virt-install must be run as root and, once invoked, will ask a number of questions before
creating the guest system. The question are as follows:
i. What is the name of your virtual machine and install location?

ii. How much RAM should be allocated (in megabytes)?

iii. What would you like to use as the disk (path)?

iv. Would you like to enable graphics support? (yes or no)

The following transcript shows a typical virt-install session:
virt-install
3. Once the guest system has been created, the vncviewer screen will appear containing the operating
system installer:

Installing a Xen Guest OS (Fedora Core 5)

1. Fedora Core 5 has a Xen guest installation script that simplifies the process, although it
installs only FC5 guests. The script expects to access the FC5 install tree via FTP, the Web,
or NFS; for some reason, you can’t specify a directory or file.
mkdir /var/www/html/dvd
mount -t iso9660 /dev/dvd /var/www/html/dvd
apachectl start

Now we’ll run the installation script and answer its questions:
xenguest-install.py
2. Xen does not start the guest operating system automatically. You need to type this command on
the host:
xm create guest1
Course material

238

3. To prove that both servers are running, try these commands:
xm list
xentop
4. To start Xen domains automatically, use these commands:
/sbin/chkconfig --level 345 xendomains on
/sbin/service xendomains start
5. To Edit A Xen Guest Configuration File, Which Is A Text File (Actually, A Python Script) In The
/Etc/Xen Directory.
man xmdomain.cfg
And edit as follows,
Automatically generated Xen config file
name = "guest1"
memory = "256"
disk = ['file:/xenguest,xvda,w']
vif = ['mac=00:16:3e:63:c7:76']
uuid = "bc2c1684-c057-99ea-962b-de44a038bbda"
bootloader="/usr/bin/pygrub"
on_reboot = 'restart'
on_crash = 'restart'
6. Once you have a guest configuration file, create the Xen guest with

this command:
where
xm create -c guest_name
guest_name can be a full pathname or a relative filename (in which case Xen places
it in /etc/xen/guest_name).
Xen will create the guest domain and try to boot it from the given file or device.
The -c option attaches a console to the domain when it starts, so you can answer the
installation questions that appear.

